forked from lh3/minimap2
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmap.c
1483 lines (1354 loc) · 58.6 KB
/
map.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include "kthread.h"
#include "kvec.h"
#include "kalloc.h"
#include "sdust.h"
#include "mmpriv.h"
#include "bseq.h"
#include "khash.h"
struct mm_tbuf_s {
void *km;
int rep_len, frag_gap; // updated per read.
double timers[MM_N_THR_TIMERS];
}; // per thread
#if defined(__AMD_SPLIT_KERNELS__)
#include "plutils.h"
#define N_ACCUM 64
typedef struct{
int batchid;
void *km; // memory pool for each batch
int count; // number of reads in the batch
size_t total_n; // total number of anchors in the batch
chain_read_t *reads;
} mm_batch_trbuf_t;
// local variables required for each read processed by a CPU thread
typedef struct {
mm_batch_trbuf_t acc_batch;
int is_full;
mm_batch_trbuf_t launched_batch;
int has_launched;
mm_batch_trbuf_t pending_batch;
int is_pending;
} mm_trbuf_t; // per thread
#endif
mm_tbuf_t *mm_tbuf_init(void)
{
mm_tbuf_t *b;
b = (mm_tbuf_t*)calloc(1, sizeof(mm_tbuf_t));
if (!(mm_dbg_flag & 1)) b->km = km_init();
return b;
}
void mm_tbuf_destroy(mm_tbuf_t *b)
{
if (b == 0) return;
km_destroy(b->km);
free(b);
}
void *mm_tbuf_get_km(mm_tbuf_t *b)
{
return b->km;
}
#if defined(__AMD_SPLIT_KERNELS__)
void mm_trbuf_batch_init(mm_batch_trbuf_t *batch_, int batch_max_reads) {
batch_->count = 0;
batch_->total_n = 0;
batch_->reads = (chain_read_t *)malloc(sizeof(chain_read_t) * batch_max_reads);
memset(batch_->reads, 0, sizeof(chain_read_t) * batch_max_reads);
batch_->batchid = -1;
batch_->km = km_init();
}
void mm_trbuf_batch_reset(mm_batch_trbuf_t *batch_, int batch_max_reads, const mm_mapopt_t *opt) {
// free all the reads in the batch
for (int i = 0; i < batch_->count; i++) {
free_read(&batch_->reads[i], batch_->km);
}
/* reset memory pool km */
km_stat_t kmst;
if (batch_->km) {
chain_read_t *last_read = batch_->reads + batch_->count;
km_stat(batch_->km, &kmst);
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "QM\t%s\t%d\tBid=%d\tcap=%ld,avail=%ld,nCore=%ld,largest=%ld\n",
last_read->seq.name, last_read->seq.qlen_sum, batch_->batchid, kmst.capacity, kmst.available, kmst.n_cores, kmst.largest);
assert(kmst.n_blocks == kmst.n_cores); // otherwise, there is a memory leak
assert(kmst.capacity == kmst.meta_size + kmst.available);
if (kmst.largest > 1U<<28 || (opt->cap_kalloc > 0 && kmst.capacity > opt->cap_kalloc)) {
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "[W::%s] reset thread-local memory after read %s\n", __func__, last_read->seq.name);
km_destroy(batch_->km);
batch_->km = km_init();
}
}
batch_->count = 0;
batch_->total_n = 0;
batch_->batchid = -1;
}
void mm_trbuf_batch_destroy(mm_batch_trbuf_t *batch_){
// free reads in the batch
for (int i = 0; i < batch_->count; i++){
free_read(&batch_->reads[i], batch_->km);
}
batch_->batchid = -1;
batch_->total_n = 0;
batch_->count = 0;
/* clean memory pool */
km_stat_t kmst;
if (batch_->km) {
km_stat(batch_->km, &kmst);
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "Destroy memory pool cap=%ld,avail=%ld,nCore=%ld,largest=%ld\n",
kmst.capacity, kmst.available, kmst.n_cores, kmst.largest);
assert(kmst.n_blocks == kmst.n_cores); // otherwise, there is a memory leak
assert(kmst.capacity == kmst.meta_size + kmst.available);
km_destroy(batch_->km);
batch_->km = 0;
}
free(batch_->reads);
batch_->reads = 0;
}
mm_trbuf_t *mm_trbuf_init(const int batch_max_reads, const mm_mapopt_t *opt)
{
mm_trbuf_t *tr;
tr = (mm_trbuf_t *)calloc(1, sizeof(mm_trbuf_t));
tr->is_full = 0;
tr->is_pending = 0;
tr->has_launched = 0;
mm_trbuf_batch_init(&tr->acc_batch, batch_max_reads);
tr->acc_batch.batchid = 0;
mm_trbuf_batch_init(&tr->pending_batch, batch_max_reads);
tr->pending_batch.batchid = 1;
mm_trbuf_batch_init(&tr->launched_batch, batch_max_reads);
tr->launched_batch.batchid = 2;
return tr;
}
void mm_trbuf_destroy(mm_trbuf_t *tr)
{
if (tr == 0) return;
mm_trbuf_batch_destroy(&tr->acc_batch);
mm_trbuf_batch_destroy(&tr->pending_batch);
mm_trbuf_batch_destroy(&tr->launched_batch);
free(tr);
}
#endif
static int mm_dust_minier(void *km, int n, mm128_t *a, int l_seq, const char *seq, int sdust_thres)
{
int n_dreg, j, k, u = 0;
const uint64_t *dreg;
sdust_buf_t *sdb;
if (sdust_thres <= 0) return n;
sdb = sdust_buf_init(km);
dreg = sdust_core((const uint8_t*)seq, l_seq, sdust_thres, 64, &n_dreg, sdb);
for (j = k = 0; j < n; ++j) { // squeeze out minimizers that significantly overlap with LCRs
int32_t qpos = (uint32_t)a[j].y>>1, span = a[j].x&0xff;
int32_t s = qpos - (span - 1), e = s + span;
while (u < n_dreg && (int32_t)dreg[u] <= s) ++u;
if (u < n_dreg && (int32_t)(dreg[u]>>32) < e) {
int v, l = 0;
for (v = u; v < n_dreg && (int32_t)(dreg[v]>>32) < e; ++v) { // iterate over LCRs overlapping this minimizer
int ss = s > (int32_t)(dreg[v]>>32)? s : dreg[v]>>32;
int ee = e < (int32_t)dreg[v]? e : (uint32_t)dreg[v];
l += ee - ss;
}
if (l <= span>>1) a[k++] = a[j]; // keep the minimizer if less than half of it falls in masked region
} else a[k++] = a[j];
}
sdust_buf_destroy(sdb);
return k; // the new size
}
static void collect_minimizers(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int n_segs, const int *qlens, const char **seqs, mm128_v *mv)
{
int i, n, sum = 0;
mv->n = 0;
for (i = n = 0; i < n_segs; ++i) {
size_t j;
mm_sketch(km, seqs[i], qlens[i], mi->w, mi->k, i, mi->flag&MM_I_HPC, mv);
for (j = n; j < mv->n; ++j)
mv->a[j].y += sum << 1;
if (opt->sdust_thres > 0) // mask low-complexity minimizers
mv->n = n + mm_dust_minier(km, mv->n - n, mv->a + n, qlens[i], seqs[i], opt->sdust_thres);
sum += qlens[i], n = mv->n;
}
}
#include "ksort.h"
#define heap_lt(a, b) ((a).x > (b).x)
KSORT_INIT(heap, mm128_t, heap_lt)
static inline int skip_seed(int flag, uint64_t r, const mm_seed_t *q, const char *qname, int qlen, const mm_idx_t *mi, int *is_self)
{
*is_self = 0;
if (qname && (flag & (MM_F_NO_DIAG|MM_F_NO_DUAL))) {
const mm_idx_seq_t *s = &mi->seq[r>>32];
int cmp;
cmp = strcmp(qname, s->name);
if ((flag&MM_F_NO_DIAG) && cmp == 0 && (int)s->len == qlen) {
if ((uint32_t)r>>1 == (q->q_pos>>1)) return 1; // avoid the diagnonal anchors
if ((r&1) == (q->q_pos&1)) *is_self = 1; // this flag is used to avoid spurious extension on self chain
}
if ((flag&MM_F_NO_DUAL) && cmp > 0) // all-vs-all mode: map once
return 1;
}
if (flag & (MM_F_FOR_ONLY|MM_F_REV_ONLY)) {
if ((r&1) == (q->q_pos&1)) { // forward strand
if (flag & MM_F_REV_ONLY) return 1;
} else {
if (flag & MM_F_FOR_ONLY) return 1;
}
}
return 0;
}
static mm128_t *collect_seed_hits_heap(void *km, const mm_mapopt_t *opt, int max_occ, const mm_idx_t *mi, const char *qname, const mm128_v *mv, int qlen, int64_t *n_a, int *rep_len,
int *n_mini_pos, uint64_t **mini_pos)
{
int i, n_m, heap_size = 0;
int64_t j, n_for = 0, n_rev = 0;
mm_seed_t *m;
mm128_t *a, *heap;
m = mm_collect_matches(km, &n_m, qlen, max_occ, opt->max_max_occ, opt->occ_dist, mi, mv, n_a, rep_len, n_mini_pos, mini_pos);
heap = (mm128_t*)kmalloc(km, n_m * sizeof(mm128_t));
a = (mm128_t*)kmalloc(km, *n_a * sizeof(mm128_t));
for (i = 0, heap_size = 0; i < n_m; ++i) {
if (m[i].n > 0) {
heap[heap_size].x = m[i].cr[0];
heap[heap_size].y = (uint64_t)i<<32;
++heap_size;
}
}
ks_heapmake_heap(heap_size, heap);
while (heap_size > 0) {
mm_seed_t *q = &m[heap->y>>32];
mm128_t *p;
uint64_t r = heap->x;
int32_t is_self, rpos = (uint32_t)r >> 1;
if (!skip_seed(opt->flag, r, q, qname, qlen, mi, &is_self)) {
if ((r&1) == (q->q_pos&1)) { // forward strand
p = &a[n_for++];
p->x = (r&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
} else { // reverse strand
p = &a[(*n_a) - (++n_rev)];
p->x = 1ULL<<63 | (r&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | (qlen - ((q->q_pos>>1) + 1 - q->q_span) - 1);
}
p->y |= (uint64_t)q->seg_id << MM_SEED_SEG_SHIFT;
if (q->is_tandem) p->y |= MM_SEED_TANDEM;
if (is_self) p->y |= MM_SEED_SELF;
}
// update the heap
if ((uint32_t)heap->y < q->n - 1) {
++heap[0].y;
heap[0].x = m[heap[0].y>>32].cr[(uint32_t)heap[0].y];
} else {
heap[0] = heap[heap_size - 1];
--heap_size;
}
ks_heapdown_heap(0, heap_size, heap);
}
kfree(km, m);
kfree(km, heap);
// reverse anchors on the reverse strand, as they are in the descending order
for (j = 0; j < n_rev>>1; ++j) {
mm128_t t = a[(*n_a) - 1 - j];
a[(*n_a) - 1 - j] = a[(*n_a) - (n_rev - j)];
a[(*n_a) - (n_rev - j)] = t;
}
if (*n_a > n_for + n_rev) {
memmove(a + n_for, a + (*n_a) - n_rev, n_rev * sizeof(mm128_t));
*n_a = n_for + n_rev;
}
return a;
}
static mm128_t *collect_seed_hits(void *km, const mm_mapopt_t *opt, int max_occ, const mm_idx_t *mi, const char *qname, const mm128_v *mv, int qlen, int64_t *n_a, int *rep_len,
int *n_mini_pos, uint64_t **mini_pos)
{
int i, n_m;
mm_seed_t *m;
mm128_t *a;
m = mm_collect_matches(km, &n_m, qlen, max_occ, opt->max_max_occ, opt->occ_dist, mi, mv, n_a, rep_len, n_mini_pos, mini_pos);
a = (mm128_t*)kmalloc(km, *n_a * sizeof(mm128_t));
for (i = 0, *n_a = 0; i < n_m; ++i) {
mm_seed_t *q = &m[i];
const uint64_t *r = q->cr;
uint32_t k;
for (k = 0; k < q->n; ++k) {
int32_t is_self, rpos = (uint32_t)r[k] >> 1;
mm128_t *p;
if (skip_seed(opt->flag, r[k], q, qname, qlen, mi, &is_self)) continue;
p = &a[(*n_a)++];
if ((r[k]&1) == (q->q_pos&1)) { // forward strand
p->x = (r[k]&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
} else if (!(opt->flag & MM_F_QSTRAND)) { // reverse strand and not in the query-strand mode
p->x = 1ULL<<63 | (r[k]&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | (qlen - ((q->q_pos>>1) + 1 - q->q_span) - 1);
} else { // reverse strand; query-strand
int32_t len = mi->seq[r[k]>>32].len;
p->x = 1ULL<<63 | (r[k]&0xffffffff00000000ULL) | (len - (rpos + 1 - q->q_span) - 1); // coordinate only accurate for non-HPC seeds
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
}
p->y |= (uint64_t)q->seg_id << MM_SEED_SEG_SHIFT;
if (q->is_tandem) p->y |= MM_SEED_TANDEM;
if (is_self) p->y |= MM_SEED_SELF;
}
}
kfree(km, m);
radix_sort_128x(a, a + (*n_a));
return a;
}
static void chain_post(const mm_mapopt_t *opt, int max_chain_gap_ref, const mm_idx_t *mi, void *km, int qlen, int n_segs, const int *qlens, int *n_regs, mm_reg1_t *regs, mm128_t *a)
{
if (!(opt->flag & MM_F_ALL_CHAINS)) { // don't choose primary mapping(s)
mm_set_parent(km, opt->mask_level, opt->mask_len, *n_regs, regs, opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop);
if (n_segs <= 1) mm_select_sub(km, opt->pri_ratio, mi->k*2, opt->best_n, 1, opt->max_gap * 0.8, n_regs, regs);
else mm_select_sub_multi(km, opt->pri_ratio, 0.2f, 0.7f, max_chain_gap_ref, mi->k*2, opt->best_n, n_segs, qlens, n_regs, regs);
}
}
static mm_reg1_t *align_regs(const mm_mapopt_t *opt, const mm_idx_t *mi, void *km, int qlen, const char *seq, int *n_regs, mm_reg1_t *regs, mm128_t *a)
{
if (!(opt->flag & MM_F_CIGAR)) return regs;
regs = mm_align_skeleton(km, opt, mi, qlen, seq, n_regs, regs, a); // this calls mm_filter_regs()
if (!(opt->flag & MM_F_ALL_CHAINS)) { // don't choose primary mapping(s)
mm_set_parent(km, opt->mask_level, opt->mask_len, *n_regs, regs, opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop);
mm_select_sub(km, opt->pri_ratio, mi->k*2, opt->best_n, 0, opt->max_gap * 0.8, n_regs, regs);
mm_set_sam_pri(*n_regs, regs);
}
return regs;
}
#if defined(__AMD_SPLIT_KERNELS__)
void mm_map_seed(const mm_idx_t *mi, const mm_mapopt_t *opt,
chain_read_t *read_, mm_tbuf_t *b, void *km) {
int n_segs = read_->n_seg;
const int *qlens = read_->qlens;
const char **seqs = read_->qseqs;
const char *qname = read_->seq.name;
int *rep_len = &read_->rep_len;
int *qlen_sum = &read_->seq.qlen_sum;
int *n_mini_pos = &read_->n_mini_pos;
uint64_t **mini_pos = &read_->mini_pos;
int64_t *n_a = &read_->n;
mm128_t **a = &read_->a;
int i;
mm128_v mv = {0,0,0};
double *timers = b->timers;
double t1 = realtime();
for (i = 0, *qlen_sum = 0; i < n_segs; ++i) *qlen_sum += qlens[i];
if (*qlen_sum == 0 || n_segs <= 0 || n_segs > MM_MAX_SEG) return;
if (opt->max_qlen > 0 && *qlen_sum > opt->max_qlen) return;
collect_minimizers(km, opt, mi, n_segs, qlens, seqs, &mv);
if (opt->q_occ_frac > 0.0f) mm_seed_mz_flt(km, &mv, opt->mid_occ, opt->q_occ_frac);
if (opt->flag & MM_F_HEAP_SORT) *a = collect_seed_hits_heap(km, opt, opt->mid_occ, mi, qname, &mv, *qlen_sum, n_a, rep_len, n_mini_pos, mini_pos);
else *a = collect_seed_hits(km, opt, opt->mid_occ, mi, qname, &mv, *qlen_sum, n_a, rep_len, n_mini_pos, mini_pos);
if (mm_dbg_flag & MM_DBG_PRINT_SEED) {
fprintf(stderr, "RS\t%d\n", *rep_len);
for (i = 0; i < *n_a; ++i)
fprintf(stderr, "SD\t%s\t%d\t%c\t%d\t%d\t%d\n", mi->seq[(*a)[i].x<<1>>33].name, (int32_t)(*a)[i].x, "+-"[(*a)[i].x>>63], (int32_t)(*a)[i].y, (int32_t)((*a)[i].y>>32&0xff),
i == 0? 0 : ((int32_t)(*a)[i].y - (int32_t)(*a)[i-1].y) - ((int32_t)(*a)[i].x - (int32_t)(*a)[i-1].x));
}
kfree(km, mv.a);
timers[MM_TIME_SEED] += realtime() - t1;
}
Misc build_misc(const mm_idx_t *mi, const mm_mapopt_t *opt, const int64_t qlen_sum, const int n_seg) {
int max_chain_gap_qry, max_chain_gap_ref, is_splice = !!(opt->flag & MM_F_SPLICE), is_sr = !!(opt->flag & MM_F_SR);
float chn_pen_gap, chn_pen_skip;
// set max chaining gap on the query and the reference sequence
if (is_sr)
max_chain_gap_qry = qlen_sum > opt->max_gap? qlen_sum : opt->max_gap;
else max_chain_gap_qry = opt->max_gap;
if (opt->max_gap_ref > 0) {
max_chain_gap_ref = opt->max_gap_ref; // always honor mm_mapopt_t::max_gap_ref if set
} else if (opt->max_frag_len > 0) {
max_chain_gap_ref = opt->max_frag_len - qlen_sum;
if (max_chain_gap_ref < opt->max_gap) max_chain_gap_ref = opt->max_gap;
} else max_chain_gap_ref = opt->max_gap;
chn_pen_gap = opt->chain_gap_scale * 0.01 * mi->k;
chn_pen_skip = opt->chain_skip_scale * 0.01 * mi->k;
Misc misc;
misc.max_iter = opt->max_chain_iter; // always set up MAX_UINT
misc.max_dist_y = max_chain_gap_qry;
misc.max_dist_x = max_chain_gap_ref;
misc.max_skip = opt->max_chain_skip;
misc.bw = opt->bw;
misc.min_cnt = opt->min_cnt;
misc.min_score = opt->min_chain_score;
misc.is_cdna = is_splice;
misc.n_seg = n_seg;
misc.chn_pen_gap = chn_pen_gap;
misc.chn_pen_skip = chn_pen_skip;
return misc;
}
void post_chaining_helper(const mm_idx_t *mi, const mm_mapopt_t *opt, chain_read_t* read, Misc misc, void *km) {
int n_segs = read->n_seg;
const char *qname = read->seq.name;
int *rep_len = &read->rep_len;
int *frag_gap = &read->frag_gap;
int *qlen_sum = &read->seq.qlen_sum;
int *n_regs0 = &read->n_u;
int *n_mini_pos = &read->n_mini_pos;
uint64_t **mini_pos = &read->mini_pos;
int64_t *n_a = &read->n;
uint64_t **u = &read->u;
mm128_t **a = &read->a;
int i;
mm128_v mv = {0, 0, 0};
if (opt->bw_long > opt->bw &&
(opt->flag & (MM_F_SPLICE | MM_F_SR | MM_F_NO_LJOIN)) == 0 &&
n_segs == 1 && *n_regs0 > 1) { // re-chain/long-join for long sequences
int32_t st = (int32_t)(*a)[0].y, en = (int32_t)(*a)[(int32_t)(*u)[0] - 1].y;
if (*qlen_sum - (en - st) > opt->rmq_rescue_size || en - st > *qlen_sum * opt->rmq_rescue_ratio) {
int32_t i;
for (i = 0, *n_a = 0; i < *n_regs0; ++i) *n_a += (int32_t)(*u)[i];
kfree(km, *u);
radix_sort_128x(*a, (*a) + *n_a);
*a = mg_lchain_rmq(opt->max_gap, opt->rmq_inner_dist, opt->bw_long, opt->max_chain_skip, opt->rmq_size_cap, opt->min_cnt, opt->min_chain_score,
misc.chn_pen_gap, misc.chn_pen_skip, *n_a, *a, n_regs0, u, km);
}
}
else if (opt->max_occ > opt->mid_occ && *rep_len > 0 &&
!(opt->flag & MM_F_RMQ)) { // re-chain, mostly for short reads
int rechain = 0;
if (*n_regs0 > 0) { // test if the best chain has all the segments
int n_chained_segs = 1, max = 0, max_i = -1, max_off = -1, off = 0;
for (i = 0; i < *n_regs0; ++i) { // find the best chain
if (max < (int)((*u)[i]>>32)) max = (*u)[i]>>32, max_i = i, max_off = off;
off += (uint32_t)(*u)[i];
}
for (i = 1; i < (int32_t)(*u)[max_i]; ++i) // count the number of segments in the best chain
if (((*a)[max_off+i].y&MM_SEED_SEG_MASK) != ((*a)[max_off+i-1].y&MM_SEED_SEG_MASK))
++n_chained_segs;
if (n_chained_segs < n_segs)
rechain = 1;
} else rechain = 1;
if (rechain) { // redo chaining with a higher max_occ threshold
kfree(km, *a);
kfree(km, *u);
kfree(km, *mini_pos);
if (opt->flag & MM_F_HEAP_SORT) *a = collect_seed_hits_heap(km, opt, opt->max_occ, mi, qname, &mv, *qlen_sum, n_a, rep_len, n_mini_pos, mini_pos);
else *a = collect_seed_hits(km, opt, opt->max_occ, mi, qname, &mv, *qlen_sum, n_a, rep_len, n_mini_pos, mini_pos);
*a = mg_lchain_dp(misc.max_dist_x, misc.max_dist_y, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score,
misc.chn_pen_gap, misc.chn_pen_skip, misc.is_cdna, n_segs, *n_a, *a, n_regs0, u, km);
kfree(km, mv.a);
}
}
*frag_gap = misc.max_dist_x;
}
void mm_map_chain(const mm_idx_t *mi, const mm_mapopt_t *opt,
chain_read_t *read_, mm_tbuf_t *b, void *km) {
int n_segs = read_->n_seg;
const char *qname = read_->seq.name;
int *rep_len = &read_->rep_len;
int *frag_gap = &read_->frag_gap;
int *qlen_sum = &read_->seq.qlen_sum;
int *n_regs0 = &read_->n_u;
int *n_mini_pos = &read_->n_mini_pos;
uint64_t **mini_pos = &read_->mini_pos;
int64_t *n_a = &read_->n;
uint64_t **u = &read_->u;
mm128_t **a = &read_->a;
int i;
int max_chain_gap_qry, max_chain_gap_ref, is_splice = !!(opt->flag & MM_F_SPLICE), is_sr = !!(opt->flag & MM_F_SR);
mm128_v mv = {0,0,0};
float chn_pen_gap, chn_pen_skip;
double *timers = b->timers;
// set max chaining gap on the query and the reference sequence
if (is_sr)
max_chain_gap_qry = *qlen_sum > opt->max_gap? *qlen_sum : opt->max_gap;
else max_chain_gap_qry = opt->max_gap;
if (opt->max_gap_ref > 0) {
max_chain_gap_ref = opt->max_gap_ref; // always honor mm_mapopt_t::max_gap_ref if set
} else if (opt->max_frag_len > 0) {
max_chain_gap_ref = opt->max_frag_len - *qlen_sum;
if (max_chain_gap_ref < opt->max_gap) max_chain_gap_ref = opt->max_gap;
} else max_chain_gap_ref = opt->max_gap;
chn_pen_gap = opt->chain_gap_scale * 0.01 * mi->k;
chn_pen_skip = opt->chain_skip_scale * 0.01 * mi->k;
if (opt->flag & MM_F_RMQ) {
*a = mg_lchain_rmq(opt->max_gap, opt->rmq_inner_dist, opt->bw, opt->max_chain_skip, opt->rmq_size_cap, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, *n_a, *a, n_regs0, u, km);
} else {
*a = mg_lchain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, is_splice, n_segs, *n_a, *a, n_regs0, u, km);
}
if (opt->bw_long > opt->bw && (opt->flag & (MM_F_SPLICE|MM_F_SR|MM_F_NO_LJOIN)) == 0 && n_segs == 1 && *n_regs0 > 1) { // re-chain/long-join for long sequences
int32_t st = (int32_t)(*a)[0].y, en = (int32_t)(*a)[(int32_t)(*u)[0] - 1].y;
if (*qlen_sum - (en - st) > opt->rmq_rescue_size || en - st > *qlen_sum * opt->rmq_rescue_ratio) {
int32_t i;
for (i = 0, *n_a = 0; i < *n_regs0; ++i) *n_a += (int32_t)(*u)[i];
kfree(km, *u);
radix_sort_128x(*a, (*a) + *n_a);
*a = mg_lchain_rmq(opt->max_gap, opt->rmq_inner_dist, opt->bw_long, opt->max_chain_skip, opt->rmq_size_cap, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, *n_a, *a, n_regs0, u, km);
}
} else if (opt->max_occ > opt->mid_occ && *rep_len > 0 && !(opt->flag & MM_F_RMQ)) { // re-chain, mostly for short reads
int rechain = 0;
if (*n_regs0 > 0) { // test if the best chain has all the segments
int n_chained_segs = 1, max = 0, max_i = -1, max_off = -1, off = 0;
for (i = 0; i < *n_regs0; ++i) { // find the best chain
if (max < (int)((*u)[i]>>32)) max = (*u)[i]>>32, max_i = i, max_off = off;
off += (uint32_t)(*u)[i];
}
for (i = 1; i < (int32_t)(*u)[max_i]; ++i) // count the number of segments in the best chain
if (((*a)[max_off+i].y&MM_SEED_SEG_MASK) != ((*a)[max_off+i-1].y&MM_SEED_SEG_MASK))
++n_chained_segs;
if (n_chained_segs < n_segs)
rechain = 1;
} else rechain = 1;
if (rechain) { // redo chaining with a higher max_occ threshold
kfree(km, *a);
kfree(km, *u);
kfree(km, *mini_pos);
if (opt->flag & MM_F_HEAP_SORT) *a = collect_seed_hits_heap(km, opt, opt->max_occ, mi, qname, &mv, *qlen_sum, n_a, rep_len, n_mini_pos, mini_pos);
else *a = collect_seed_hits(km, opt, opt->max_occ, mi, qname, &mv, *qlen_sum, n_a, rep_len, n_mini_pos, mini_pos);
*a = mg_lchain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, is_splice, n_segs, *n_a, *a, n_regs0, u, km);
kfree(km, mv.a);
}
}
*frag_gap = max_chain_gap_ref;
}
void mm_map_align(const mm_idx_t *mi, const mm_mapopt_t *opt,
chain_read_t *read_, mm_reg1_t **regs, int *n_regs, mm_tbuf_t *b, void *km) {
int n_segs = read_->n_seg;
const int *qlens = read_->qlens;
const char **seqs = read_->qseqs;
const char *qname = read_->seq.name;
int rep_len = read_->rep_len;
int frag_gap = read_->frag_gap;
int qlen_sum = read_->seq.qlen_sum;
int *n_regs0 = &read_->n_u;
int n_mini_pos = read_->n_mini_pos;
uint64_t **mini_pos = &read_->mini_pos;
uint64_t *u = read_->u;
mm128_t *a = read_->a;
int i, j;
int max_chain_gap_ref = frag_gap;
int is_sr = !!(opt->flag & MM_F_SR);
uint32_t hash;
mm_reg1_t *regs0;
double *timers = b->timers;
double t1 = realtime();
for (i = 0; i < n_segs; ++i) n_regs[i] = 0, regs[i] = 0; // initialize regs
hash = qname && !(opt->flag & MM_F_NO_HASH_NAME)? __ac_X31_hash_string(qname) : 0;
hash ^= __ac_Wang_hash(qlen_sum) + __ac_Wang_hash(opt->seed);
hash = __ac_Wang_hash(hash);
regs0 = mm_gen_regs(km, hash, qlen_sum, *n_regs0, u, a, !!(opt->flag&MM_F_QSTRAND));
if (mi->n_alt) {
mm_mark_alt(mi, *n_regs0, regs0);
mm_hit_sort(km, n_regs0, regs0, opt->alt_drop); // this step can be merged into mm_gen_regs(); will do if this shows up in profile
}
if (mm_dbg_flag & (MM_DBG_PRINT_SEED|MM_DBG_PRINT_CHAIN))
for (j = 0; j < *n_regs0; ++j)
for (i = regs0[j].as; i < regs0[j].as + regs0[j].cnt; ++i)
fprintf(stderr, "CN\t%d\t%s\t%d\t%c\t%d\t%d\t%d\n", j, mi->seq[a[i].x<<1>>33].name, (int32_t)a[i].x, "+-"[a[i].x>>63], (int32_t)a[i].y, (int32_t)(a[i].y>>32&0xff),
i == regs0[j].as? 0 : ((int32_t)a[i].y - (int32_t)a[i-1].y) - ((int32_t)a[i].x - (int32_t)a[i-1].x));
chain_post(opt, max_chain_gap_ref, mi, km, qlen_sum, n_segs, qlens, n_regs0, regs0, a);
if (!is_sr && !(opt->flag&MM_F_QSTRAND)) {
mm_est_err(mi, qlen_sum, *n_regs0, regs0, a, n_mini_pos, *mini_pos);
*n_regs0 = mm_filter_strand_retained(*n_regs0, regs0);
}
if (n_segs == 1) { // uni-segment
regs0 = align_regs(opt, mi, km, qlens[0], seqs[0], n_regs0, regs0, a);
regs0 = (mm_reg1_t*)realloc(regs0, sizeof(*regs0) * *n_regs0);
mm_set_mapq(km, *n_regs0, regs0, opt->min_chain_score, opt->a, rep_len, is_sr);
n_regs[0] = *n_regs0, regs[0] = regs0;
} else { // multi-segment
mm_seg_t *seg;
seg = mm_seg_gen(km, hash, n_segs, qlens, *n_regs0, regs0, n_regs, regs, a); // split fragment chain to separate segment chains
free(regs0);
for (i = 0; i < n_segs; ++i) {
mm_set_parent(km, opt->mask_level, opt->mask_len, n_regs[i], regs[i], opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop); // update mm_reg1_t::parent
regs[i] = align_regs(opt, mi, km, qlens[i], seqs[i], &n_regs[i], regs[i], seg[i].a);
mm_set_mapq(km, n_regs[i], regs[i], opt->min_chain_score, opt->a, rep_len, is_sr);
}
mm_seg_free(km, n_segs, seg);
if (n_segs == 2 && opt->pe_ori >= 0 && (opt->flag&MM_F_CIGAR))
mm_pair(km, max_chain_gap_ref, opt->pe_bonus, opt->a * 2 + opt->b, opt->a, qlens, n_regs, regs); // pairing
}
timers[MM_TIME_ALIGN] += realtime() - t1;
kfree(km, a);
kfree(km, u);
kfree(km, *mini_pos);
}
#endif
void mm_map_frag(const mm_idx_t *mi, int n_segs, const int *qlens, const char **seqs, int *n_regs, mm_reg1_t **regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *qname)
{
int i, j, rep_len, qlen_sum, n_regs0, n_mini_pos;
int max_chain_gap_qry, max_chain_gap_ref, is_splice = !!(opt->flag & MM_F_SPLICE), is_sr = !!(opt->flag & MM_F_SR);
uint32_t hash;
int64_t n_a;
uint64_t *u, *mini_pos;
mm128_t *a;
mm128_v mv = {0,0,0};
mm_reg1_t *regs0;
km_stat_t kmst;
float chn_pen_gap, chn_pen_skip;
double *timers = b->timers;
double t1 = realtime();
for (i = 0, qlen_sum = 0; i < n_segs; ++i)
qlen_sum += qlens[i], n_regs[i] = 0, regs[i] = 0;
if (qlen_sum == 0 || n_segs <= 0 || n_segs > MM_MAX_SEG) return;
if (opt->max_qlen > 0 && qlen_sum > opt->max_qlen) return;
hash = qname && !(opt->flag & MM_F_NO_HASH_NAME)? __ac_X31_hash_string(qname) : 0;
hash ^= __ac_Wang_hash(qlen_sum) + __ac_Wang_hash(opt->seed);
hash = __ac_Wang_hash(hash);
collect_minimizers(b->km, opt, mi, n_segs, qlens, seqs, &mv);
if (opt->q_occ_frac > 0.0f) mm_seed_mz_flt(b->km, &mv, opt->mid_occ, opt->q_occ_frac);
if (opt->flag & MM_F_HEAP_SORT) a = collect_seed_hits_heap(b->km, opt, opt->mid_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
else a = collect_seed_hits(b->km, opt, opt->mid_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
if (mm_dbg_flag & MM_DBG_PRINT_SEED) {
fprintf(stderr, "RS\t%d\n", rep_len);
for (i = 0; i < n_a; ++i)
fprintf(stderr, "SD\t%s\t%d\t%c\t%d\t%d\t%d\n", mi->seq[a[i].x<<1>>33].name, (int32_t)a[i].x, "+-"[a[i].x>>63], (int32_t)a[i].y, (int32_t)(a[i].y>>32&0xff),
i == 0? 0 : ((int32_t)a[i].y - (int32_t)a[i-1].y) - ((int32_t)a[i].x - (int32_t)a[i-1].x));
}
timers[MM_TIME_SEED] += realtime() - t1;
t1 = realtime();
// set max chaining gap on the query and the reference sequence
if (is_sr)
max_chain_gap_qry = qlen_sum > opt->max_gap? qlen_sum : opt->max_gap;
else max_chain_gap_qry = opt->max_gap;
if (opt->max_gap_ref > 0) {
max_chain_gap_ref = opt->max_gap_ref; // always honor mm_mapopt_t::max_gap_ref if set
} else if (opt->max_frag_len > 0) {
max_chain_gap_ref = opt->max_frag_len - qlen_sum;
if (max_chain_gap_ref < opt->max_gap) max_chain_gap_ref = opt->max_gap;
} else max_chain_gap_ref = opt->max_gap;
chn_pen_gap = opt->chain_gap_scale * 0.01 * mi->k;
chn_pen_skip = opt->chain_skip_scale * 0.01 * mi->k;
if (opt->flag & MM_F_RMQ) {
a = mg_lchain_rmq(opt->max_gap, opt->rmq_inner_dist, opt->bw, opt->max_chain_skip, opt->rmq_size_cap, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, n_a, a, &n_regs0, &u, b->km);
} else {
a = mg_lchain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, is_splice, n_segs, n_a, a, &n_regs0, &u, b->km);
}
if (opt->bw_long > opt->bw && (opt->flag & (MM_F_SPLICE|MM_F_SR|MM_F_NO_LJOIN)) == 0 && n_segs == 1 && n_regs0 > 1) { // re-chain/long-join for long sequences
int32_t st = (int32_t)a[0].y, en = (int32_t)a[(int32_t)u[0] - 1].y;
if (qlen_sum - (en - st) > opt->rmq_rescue_size || en - st > qlen_sum * opt->rmq_rescue_ratio) {
int32_t i;
for (i = 0, n_a = 0; i < n_regs0; ++i) n_a += (int32_t)u[i];
kfree(b->km, u);
radix_sort_128x(a, a + n_a);
a = mg_lchain_rmq(opt->max_gap, opt->rmq_inner_dist, opt->bw_long, opt->max_chain_skip, opt->rmq_size_cap, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, n_a, a, &n_regs0, &u, b->km);
}
} else if (opt->max_occ > opt->mid_occ && rep_len > 0 && !(opt->flag & MM_F_RMQ)) { // re-chain, mostly for short reads
int rechain = 0;
if (n_regs0 > 0) { // test if the best chain has all the segments
int n_chained_segs = 1, max = 0, max_i = -1, max_off = -1, off = 0;
for (i = 0; i < n_regs0; ++i) { // find the best chain
if (max < (int)(u[i]>>32)) max = u[i]>>32, max_i = i, max_off = off;
off += (uint32_t)u[i];
}
for (i = 1; i < (int32_t)u[max_i]; ++i) // count the number of segments in the best chain
if ((a[max_off+i].y&MM_SEED_SEG_MASK) != (a[max_off+i-1].y&MM_SEED_SEG_MASK))
++n_chained_segs;
if (n_chained_segs < n_segs)
rechain = 1;
} else rechain = 1;
if (rechain) { // redo chaining with a higher max_occ threshold
kfree(b->km, a);
kfree(b->km, u);
kfree(b->km, mini_pos);
if (opt->flag & MM_F_HEAP_SORT) a = collect_seed_hits_heap(b->km, opt, opt->max_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
else a = collect_seed_hits(b->km, opt, opt->max_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
a = mg_lchain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, is_splice, n_segs, n_a, a, &n_regs0, &u, b->km);
}
}
b->frag_gap = max_chain_gap_ref;
b->rep_len = rep_len;
timers[MM_TIME_CHAIN] += realtime() - t1;
t1 = realtime();
regs0 = mm_gen_regs(b->km, hash, qlen_sum, n_regs0, u, a, !!(opt->flag&MM_F_QSTRAND));
if (mi->n_alt) {
mm_mark_alt(mi, n_regs0, regs0);
mm_hit_sort(b->km, &n_regs0, regs0, opt->alt_drop); // this step can be merged into mm_gen_regs(); will do if this shows up in profile
}
if (mm_dbg_flag & (MM_DBG_PRINT_SEED|MM_DBG_PRINT_CHAIN))
for (j = 0; j < n_regs0; ++j)
for (i = regs0[j].as; i < regs0[j].as + regs0[j].cnt; ++i)
fprintf(stderr, "CN\t%d\t%s\t%d\t%c\t%d\t%d\t%d\n", j, mi->seq[a[i].x<<1>>33].name, (int32_t)a[i].x, "+-"[a[i].x>>63], (int32_t)a[i].y, (int32_t)(a[i].y>>32&0xff),
i == regs0[j].as? 0 : ((int32_t)a[i].y - (int32_t)a[i-1].y) - ((int32_t)a[i].x - (int32_t)a[i-1].x));
chain_post(opt, max_chain_gap_ref, mi, b->km, qlen_sum, n_segs, qlens, &n_regs0, regs0, a);
if (!is_sr && !(opt->flag&MM_F_QSTRAND)) {
mm_est_err(mi, qlen_sum, n_regs0, regs0, a, n_mini_pos, mini_pos);
n_regs0 = mm_filter_strand_retained(n_regs0, regs0);
}
if (n_segs == 1) { // uni-segment
regs0 = align_regs(opt, mi, b->km, qlens[0], seqs[0], &n_regs0, regs0, a);
regs0 = (mm_reg1_t*)realloc(regs0, sizeof(*regs0) * n_regs0);
mm_set_mapq(b->km, n_regs0, regs0, opt->min_chain_score, opt->a, rep_len, is_sr);
n_regs[0] = n_regs0, regs[0] = regs0;
} else { // multi-segment
mm_seg_t *seg;
seg = mm_seg_gen(b->km, hash, n_segs, qlens, n_regs0, regs0, n_regs, regs, a); // split fragment chain to separate segment chains
free(regs0);
for (i = 0; i < n_segs; ++i) {
mm_set_parent(b->km, opt->mask_level, opt->mask_len, n_regs[i], regs[i], opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop); // update mm_reg1_t::parent
regs[i] = align_regs(opt, mi, b->km, qlens[i], seqs[i], &n_regs[i], regs[i], seg[i].a);
mm_set_mapq(b->km, n_regs[i], regs[i], opt->min_chain_score, opt->a, rep_len, is_sr);
}
mm_seg_free(b->km, n_segs, seg);
if (n_segs == 2 && opt->pe_ori >= 0 && (opt->flag&MM_F_CIGAR))
mm_pair(b->km, max_chain_gap_ref, opt->pe_bonus, opt->a * 2 + opt->b, opt->a, qlens, n_regs, regs); // pairing
}
timers[MM_TIME_ALIGN] += realtime() - t1;
kfree(b->km, mv.a);
kfree(b->km, a);
kfree(b->km, u);
kfree(b->km, mini_pos);
if (b->km) {
km_stat(b->km, &kmst);
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "QM\t%s\t%d\tcap=%ld,nCore=%ld,largest=%ld\n", qname, qlen_sum, kmst.capacity, kmst.n_cores, kmst.largest);
assert(kmst.n_blocks == kmst.n_cores); // otherwise, there is a memory leak
if (kmst.largest > 1U<<28 || (opt->cap_kalloc > 0 && kmst.capacity > opt->cap_kalloc)) {
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "[W::%s] reset thread-local memory after read %s\n", __func__, qname);
km_destroy(b->km);
b->km = km_init();
}
}
}
mm_reg1_t *mm_map(const mm_idx_t *mi, int qlen, const char *seq, int *n_regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *qname)
{
mm_reg1_t *regs;
mm_map_frag(mi, 1, &qlen, &seq, n_regs, ®s, b, opt, qname);
return regs;
}
/**************************
* Multi-threaded mapping *
**************************/
typedef struct {
int n_processed, n_threads, n_fp;
int64_t mini_batch_size;
const mm_mapopt_t *opt;
mm_bseq_file_t **fp;
const mm_idx_t *mi;
kstring_t str;
int n_parts;
uint32_t *rid_shift;
FILE *fp_split, **fp_parts;
} pipeline_t;
typedef struct {
const pipeline_t *p;
int n_seq, n_frag;
mm_bseq1_t *seq;
int *n_reg, *seg_off, *n_seg, *rep_len, *frag_gap;
mm_reg1_t **reg;
mm_tbuf_t **buf;
#if defined(__AMD_SPLIT_KERNELS__)
mm_trbuf_t **trbuf;
int batch_max_reads;
size_t batch_max_anchors;
int gpu_min_n;
#endif
} step_t;
#define MIN(a, b) ((a)<(b)?(a):(b))
#define MAX(a, b) ((a)>(b)?(a):(b))
// consolidate timers from worker threads
void mm_consolidate_timers(step_t *s, pipeline_t *p)
{
// TODO: disabled for sysbio submission
return;
mm_time_seed_min = 0;
mm_time_chain_min = 0;
mm_time_align_min = 0;
mm_time_seed_max = 0;
mm_time_chain_max = 0;
mm_time_align_max = 0;
mm_time_seed_avg = 0;
mm_time_chain_avg = 0;
mm_time_align_avg = 0;
for (int i = 0; i < p->n_threads; ++i) {
mm_time_seed_min = MIN(mm_time_seed_min, s->buf[i]->timers[MM_TIME_SEED]);
mm_time_chain_min = MIN(mm_time_chain_min, s->buf[i]->timers[MM_TIME_CHAIN]);
mm_time_align_min = MIN(mm_time_align_min, s->buf[i]->timers[MM_TIME_ALIGN]);
mm_time_seed_max = MAX(mm_time_seed_max, s->buf[i]->timers[MM_TIME_SEED]);
mm_time_chain_max = MAX(mm_time_chain_max, s->buf[i]->timers[MM_TIME_CHAIN]);
mm_time_align_max = MAX(mm_time_align_max, s->buf[i]->timers[MM_TIME_ALIGN]);
mm_time_seed_avg += s->buf[i]->timers[MM_TIME_SEED];
mm_time_chain_avg += s->buf[i]->timers[MM_TIME_CHAIN];
mm_time_align_avg += s->buf[i]->timers[MM_TIME_ALIGN];
mm_time_seed_sum += s->buf[i]->timers[MM_TIME_SEED];
mm_time_chain_sum += s->buf[i]->timers[MM_TIME_CHAIN];
mm_time_align_sum += s->buf[i]->timers[MM_TIME_ALIGN];
}
mm_time_seed_avg /= p->n_threads;
mm_time_chain_avg /= p->n_threads;
mm_time_align_avg /= p->n_threads;
fprintf(stderr, "----------------------------------------------------\n");
fprintf(stderr, " Min (sec) Max (sec) Avg (sec) \n");
fprintf(stderr, "----------------------------------------------------\n");
fprintf(stderr, "Seed = %11.3f %11.3f %11.3f\n",
mm_time_seed_min, mm_time_seed_max, mm_time_seed_avg);
fprintf(stderr, "Chain = %11.3f %11.3f %11.3f\n",
mm_time_chain_min, mm_time_chain_max, mm_time_chain_avg);
fprintf(stderr, "Align = %11.3f %11.3f %11.3f\n",
mm_time_align_min, mm_time_align_max, mm_time_align_avg);
fprintf(stderr, "----------------------------------------------------\n");
fprintf(stderr, "Avg (seed + chain + align) per thread = %.3f secs\n", (mm_time_seed_avg + mm_time_chain_avg + mm_time_align_avg));
fprintf(stderr, "Total (seed + chain + align) (all batches) for %d thread(s) = %.3f secs\n", p->n_threads, (mm_time_seed_sum + mm_time_chain_sum + mm_time_align_sum));
}
#if defined(__AMD_SPLIT_KERNELS__)
void mm_trbuf_is_full(mm_trbuf_t* tr, step_t *s){
while (tr->acc_batch.total_n > s->batch_max_anchors) { // if the batch is full
tr->is_full = 1;
tr->is_pending = 1;
// move last read from acc_batch to pending batch (another memory poll)
chain_read_t *read_ptr_acc_batch = &tr->acc_batch.reads[tr->acc_batch.count - 1];
chain_read_t *read_ptr_pending_batch = &tr->pending_batch.reads[tr->pending_batch.count];
/* deep copy, with memory pool transaction*/
*read_ptr_pending_batch = *read_ptr_acc_batch;
if (s->p->opt->flag & MM_F_INDEPEND_SEG) {
read_ptr_pending_batch->qlens = (int *)kmalloc(tr->pending_batch.km, sizeof(int));
read_ptr_pending_batch->qseqs = (const char **)kmalloc(tr->pending_batch.km, sizeof(const char*));
read_ptr_pending_batch->qlens[0] = read_ptr_acc_batch->qlens[0];
read_ptr_pending_batch->qseqs[0] = read_ptr_acc_batch->qseqs[0];
} else {
read_ptr_pending_batch->qlens = (int *)kmalloc(tr->pending_batch.km, sizeof(int)*read_ptr_acc_batch->n_seg);
read_ptr_pending_batch->qseqs = (const char **)kmalloc(tr->pending_batch.km, sizeof(const char*)*read_ptr_acc_batch->n_seg);
memcpy(read_ptr_pending_batch->qlens, read_ptr_acc_batch->qlens, sizeof(int)*read_ptr_acc_batch->n_seg);
memcpy(read_ptr_pending_batch->qseqs, read_ptr_acc_batch->qseqs, sizeof(const char*)*read_ptr_acc_batch->n_seg);
}
read_ptr_pending_batch->mini_pos = (uint64_t*)kmalloc(tr->pending_batch.km, read_ptr_acc_batch->n_mini_pos * sizeof(uint64_t));
read_ptr_pending_batch->a = (mm128_t*)kmalloc(tr->pending_batch.km, read_ptr_acc_batch->n * sizeof(mm128_t));
memcpy(read_ptr_pending_batch->mini_pos, read_ptr_acc_batch->mini_pos, read_ptr_acc_batch->n_mini_pos * sizeof(uint64_t));
memcpy(read_ptr_pending_batch->a, read_ptr_acc_batch->a, read_ptr_acc_batch->n * sizeof(mm128_t));
strcpy(read_ptr_pending_batch->seq.name, read_ptr_acc_batch->seq.name);
tr->pending_batch.count++;
tr->pending_batch.total_n += read_ptr_acc_batch->n;
// remove read from acc_batch
tr->acc_batch.count--;
tr->acc_batch.total_n -= read_ptr_acc_batch->n;
kfree(tr->acc_batch.km, read_ptr_acc_batch->mini_pos);
kfree(tr->acc_batch.km, read_ptr_acc_batch->a);
kfree(tr->acc_batch.km, read_ptr_acc_batch->qlens);
kfree(tr->acc_batch.km, read_ptr_acc_batch->qseqs);
}
}
static void worker_for(void *_data, long i_in, int tid) // kt_for() callback
{
step_t *s = (step_t *)_data;
long i = i_in;
int j, iread, off, pe_ori = s->p->opt->pe_ori;
double t = 0.0;
mm_tbuf_t *b = s->buf[tid];
mm_trbuf_t *tr = s->trbuf[tid];
// Check if this is a valid read
if (i != -1) {
off = s->seg_off[i];
assert(s->n_seg[i] <= MM_MAX_SEG);
if (mm_dbg_flag & MM_DBG_PRINT_QNAME) {
fprintf(stderr, "QR\t%s\t%d\t%d\n", s->seq[off].name, tid, s->seq[off].l_seq);
t = realtime();
}
int n_indep_reads = (s->p->opt->flag & MM_F_INDEPEND_SEG) ? s->n_seg[i] : 1;
void *km;
chain_read_t *read_ptr = 0;
if ( n_indep_reads + tr->acc_batch.count <= s->batch_max_reads){
read_ptr = tr->acc_batch.reads + tr->acc_batch.count;
tr->acc_batch.count += n_indep_reads;
km = tr->acc_batch.km;
} else {
read_ptr = tr->pending_batch.reads + tr->pending_batch.count;
tr->pending_batch.count += n_indep_reads;
tr->is_full = 1;
tr->is_pending = 1;
km = tr->pending_batch.km;
}
if (s->p->opt->flag & MM_F_INDEPEND_SEG) { // assign to different chain_read_t if segments are indepent
for (j = 0; j < s->n_seg[i]; ++j) {
read_ptr->qlens = (int *)kmalloc(km, sizeof(int));
read_ptr->qseqs = (const char **)kmalloc(km, sizeof(const char *));
if (s->n_seg[i] == 2 && ((j == 0 && (pe_ori>>1&1)) || (j == 1 && (pe_ori&1))))
mm_revcomp_bseq(&s->seq[off + j]);
read_ptr->qlens[0] = s->seq[off + j].l_seq;
read_ptr->qseqs[0] = s->seq[off + j].seq;
read_ptr->n_seg = 1;
read_ptr->seq.i = i;
read_ptr->seq.seg_id = j;
strcpy(read_ptr->seq.name, s->seq[off + j].name);
read_ptr->seq.n_alt = s->p->mi->n_alt;
read_ptr->seq.is_alt = 0;
read_ptr++;
}
} else {
read_ptr->qlens = (int *)kmalloc(km, s->n_seg[i] * sizeof(int));
read_ptr->qseqs = (const char **)kmalloc(km, s->n_seg[i] * sizeof(const char *));
read_ptr->n_seg = s->n_seg[i];
for (j = 0; j < s->n_seg[i]; ++j) {
if (s->n_seg[i] == 2 && ((j == 0 && (pe_ori>>1&1)) || (j == 1 && (pe_ori&1))))
mm_revcomp_bseq(&s->seq[off + j]);
read_ptr->qlens[j] = s->seq[off + j].l_seq;
read_ptr->qseqs[j] = s->seq[off + j].seq;
}
read_ptr->seq.i = i;
read_ptr->seq.seg_id = 0;
strcpy(read_ptr->seq.name, s->seq[off].name);
read_ptr->seq.n_alt = s->p->mi->n_alt;
read_ptr->seq.is_alt = 0;
read_ptr++;
}
// Seed
for (j = 0; j < n_indep_reads; j++) {
read_ptr--;