-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
89 lines (64 loc) · 2.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# -*- coding:utf-8 -*-
# @Time : 2021/12/17 12:07
# @Author : xinhongyang
# @File : train
import torch
from models.nezhabase import NeZhaCLS
from options import train_config
from data.data_entry import select_dataloader
from transformers import AdamW, get_cosine_schedule_with_warmup
class Trainer:
def __init__(self, train_config_):
self.config = train_config_
self.model = NeZhaCLS(bert_path=self.config.BERT_PATH)
self.device = self.config.DEVICE
self.train_dataloader, self.val_dataloader = select_dataloader(self.config)
self.optimizer = AdamW(self.model.parameters(), lr=self.config.LEARNING_RATE, weight_decay=1e-4)
self.loss_fn = torch.nn.CrossEntropyLoss()
def train_per_epoch(self, epoch):
self.model.train()
for idx, sample in enumerate(self.train_dataloader):
input_ids = sample[0].to(self.device)
input_mask = sample[1].to(self.device)
input_seg = sample[2].to(self.device)
labels = sample[3].to(self.device)
# [batch_size, num_labels]
logit = self.model(input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=input_seg,
labels=labels)
print(logit, labels)
# loss写在外面吧
# labels [batch_size, num_labels]
loss = self.loss_fn(logit, labels)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
print('Train: Epoch {} batch {} Loss {}'.format(epoch, idx, loss))
def val_per_epoch(self, epoch):
self.model.eval()
val_loss = 0.0
for idx, sample in enumerate(self.val_dataloader):
input_ids = sample[0].to(self.device)
input_mask = sample[1].to(self.device)
input_seg = sample[2].to(self.device)
labels = sample[3].to(self.device)
# [batch_size, num_labels]
logit = self.model(input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=input_seg,
labels=labels)
print(logit, labels)
# loss写在外面吧
# labels [batch_size, num_labels]
val_loss += self.loss_fn(logit, labels)
print('Val: Epoch {} Loss {}'.format(epoch, val_loss / (len(self.val_dataloader * self.config.BATCH_SIZE))))
def train(self):
for e in range(1, self.config.EPOCH):
self.train_per_epoch(e)
self.val_per_epoch(e)
def main():
trainer = Trainer(train_config)
trainer.train()
if __name__ == "__main__":
main()