-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrxnpool.py
481 lines (366 loc) · 17.8 KB
/
rxnpool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# !/usr/bin/python
# _*_ coding:utf-8 _*_
# 2016/08/04
# Author:LingWu
# Email:wu_l@tib.cas.cn
import os
import json
import itertools
import copy
import time
from collections import defaultdict
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
from rdkit.Chem import DataStructs
from rdkit.Chem import MolFromSmarts as mfsma
from rdkit.Chem import MolFromSmiles as mfsmi
from rdkit.Chem import MolToSmarts as mtsma
from rdkit.Chem import MolToSmiles as mtsmi
from rdkit.Chem.AllChem import ReactionFromSmarts as rxnfsma
from rdkit.Chem.Fingerprints import FingerprintMols
def BioReactor(queryRsSmi,queryPsSmi=False,Ec=False,CALSIMI=True,Draw=True):
Rid_EcAndPattern = json.load(open("./Rid_EcAndPattern.json"))
rhea_ECAssigner = json.load(open("./rhea_ECAssigner.json"))
ridPatRsPs = RidPatRsPs(Ec)
prePsSmi_preRsSmiRxnid= defaultdict()
ridSubSimilarity = dict()
queryRsMol= mfsmi(queryRsSmi)
(n,m,k) = (0,0,0)
for rid,Pat in ridPatRsPs.items():
n += 1
SamepatId = Rid_EcAndPattern[rid]["SamepatId"].keys()
SamepatId.append(rid)
hasSmirks = False
for _rid in SamepatId:
try:
smirks = rhea_ECAssigner[rid]["smirks"]
hasSmirks = True
except:
continue
if not hasSmirks:
continue
patRsSmi = [str(pat)for pat in Pat["patrs"]]
Num = int(len(patRsSmi)-1)
queryPosition = list()
for a,pa_rs_smi in enumerate(patRsSmi):
has = pa_rs_smi.startswith("&")
if has:
pa_rs_smi = pa_rs_smi.split("(",1)[1].rsplit(")",1)[0].split(".")
pa_rs_mol = [mfsma(smi) for smi in pa_rs_smi]
else:
pa_rs_mol= mfsma(pa_rs_smi)
if (not has and queryRsMol.HasSubstructMatch(pa_rs_mol)) or \
( has and queryRsMol.HasSubstructMatch(pa_rs_mol[0]) and queryRsMol.HasSubstructMatch(pa_rs_mol[1])):
m += 1
queryPosition.append(a)
if queryPosition:
preRsSmi_patID_Dic = dict()
for patID in SamepatId:
patID = str(patID)
try:
origRxnSmirks = rhea_ECAssigner[patID]["smirks"]
except:
continue
_origRxnRsSmi =[str(smi) for smi in origRxnSmirks.split(">>")[0].split(".")]
origRxnRsSmi = copy.deepcopy(_origRxnRsSmi)
for b,b_origrs in enumerate(_origRxnRsSmi):
if b_origrs == "[H+]":
origRxnRsSmi.remove(b_origrs)
elif b_origrs == "[H]O[H]":
origRxnRsSmi[b] = "[OH2]"
if len(origRxnRsSmi) != len(patRsSmi):
continue
origRsPosition = dict()
repeat = 0
for c,c_origrs in enumerate(origRxnRsSmi):
if c_origrs not in origRsPosition.keys():
origRsPosition[c_origrs] = list()
else:
repeat += 1
c_origrs = c_origrs+'$%s' % repeat
origRsPosition[c_origrs] = list()
if c_origrs.count('$') == 0:
for d,d_sub in enumerate(patRsSmi):
has = d_sub.startswith('&')
if not has :
hasSub = mfsmi(c_origrs).HasSubstructMatch(mfsma(d_sub))
if hasSub:
origRsPosition[c_origrs].append(d)
else:
d_sub_listsmi = d_sub.split('(',1)[1].rsplit(')',1)[0].split('.')
hasSub = True
for dsub in d_sub_listsmi:
if not mfsmi(c_origrs).HasSubstructMatch(mfsma(dsub)):
hasSub = False
if hasSub:
origRsPosition[c_origrs].append(d)
else:
origRsPosition[c_origrs] = origRsPosition[c_origrs.split('$')[0]]
for po in queryPosition:
preRsSmi = range(len(patRsSmi))
preRsSmi[po] = queryRsSmi
for origrs,polist in origRsPosition.items():
_polist = copy.deepcopy(polist)
for _po in polist:
if _po == po :
_polist.remove(po)
if not _polist:
del(origRsPosition[origrs])
if CALSIMI :
if patID not in ridSubSimilarity.keys():
ridSubSimilarity[patID] = dict()
if origrs.count('$') != 0:
origrs = origrs.split('$')[0]
ridSubSimilarity[str(patID)][origrs] = similar(origrs,queryRsSmi)
else:
origRsPosition[origrs] = _polist
if len(origRsPosition.keys()) == Num:
remainOrigRsPoCombin = [x for x in list(itertools.product(*origRsPosition.values())) if len(set(x)) == Num] #1
for remainOrignRsPo in remainOrigRsPoCombin:
preRsSmiNew = copy.deepcopy(preRsSmi)
for e,e_po in enumerate(remainOrignRsPo):
e_key_origRsPosition = origRsPosition.keys()[e]
if e_key_origRsPosition.count('$') != 0:
_e_key_origRsPosition = e_key_origRsPosition.split('$')[0]
preRsSmiNew[e_po] = _e_key_origRsPosition
else:
preRsSmiNew[e_po] = e_key_origRsPosition
preRsSmiNew = ".".join(preRsSmiNew)
if preRsSmiNew not in preRsSmi_patID_Dic.keys():
preRsSmi_patID_Dic[preRsSmiNew] = list()
preRsSmi_patID_Dic[preRsSmiNew].append(patID)
else:
preRsSmi_patID_Dic[preRsSmiNew].append(patID)
else:
remainOrigRsCombin =list(itertools.combinations(origRsPosition.keys(),Num))
for remainOrigRs in remainOrigRsCombin:
remainOrigRsPoSet = [origRsPosition[x] for x in remainOrigRs]
if len(reduce(lambda x,y:set(x)|set(y),remainOrigRsPoSet)) != Num:
continue
_origRsPosition = copy.deepcopy(origRsPosition)
[_origRsPosition.pop(z) for z in origRsPosition.keys() if z not in remainOrigRs]
left = list(set(origRsPosition.keys())-set(remainOrigRs))[0]
if CALSIMI :
if patID not in ridSubSimilarity.keys():
ridSubSimilarity[patID] = dict()
if left.count("$") != 0:
left = left.split('$')[0]
ridSubSimilarity[str(patID)][left] = similar(left,queryRsSmi)
remainOrigRsPoCombin = [q for q in list(itertools.product(*_origRsPosition.values())) if len(set(q)) == Num]
for remainOrignRsPo in remainOrigRsPoCombin:
preRsSmiNew = copy.deepcopy(preRsSmi)
for f,f_po in enumerate(remainOrignRsPo):
f_key_origRsPosition = _origRsPosition.keys()[f]
if f_key_origRsPosition.count('$') != 0:
_f_key_origRsPosition = f_key_origRsPosition.split('$')[0]
preRsSmiNew[f_po] = _f_key_origRsPosition
else:
preRsSmiNew[f_po] = f_key_origRsPosition
preRsSmiNew = ".".join(preRsSmiNew)
if preRsSmiNew not in preRsSmi_patID_Dic.keys():
preRsSmi_patID_Dic[preRsSmiNew] = list()
preRsSmi_patID_Dic[preRsSmiNew].append(patID)
else:
preRsSmi_patID_Dic[preRsSmiNew].append(patID)
reaction = rxnfsma(str(Rid_EcAndPattern[rid]["pat"]))
preRsMol_list = [[mfsmi(y) for y in z.split(".")] for z in preRsSmi_patID_Dic.keys()]
for g,preRsMol in enumerate(preRsMol_list):
prePsMol_tuple = reaction.RunReactants(preRsMol)
for prePsMol in prePsMol_tuple:
if bool(prePsMol):
if queryPsSmi:
pshassub = False
pssub = mfsma(queryPsSmi)
for psmol in prePsMol:
if psmol.HasSubstructMatch(pssub):
pshassub = True
else:
pshassub = True
if pshassub:
prePsSmi = sorted([NeutraliseCharges(mtsmi(h))[0] for h in list(prePsMol)])#得到smile格式的其中一种产物组合,list形式,并对产物进行去电荷处理,方便后期去重
prePsSmi = ".".join(prePsSmi)
if prePsSmi in prePsSmi_preRsSmiRxnid:
preRsSmiRxnid = prePsSmi_preRsSmiRxnid[prePsSmi]
_preRsSmi = ".".join(sorted(preRsSmi_patID_Dic.keys()[g].split(".")))
if _preRsSmi in preRsSmiRxnid.keys():
preRsSmiRxnid[_preRsSmi].extend(preRsSmi_patID_Dic[preRsSmi_patID_Dic.keys()[g]])
preRsSmiRxnid[_preRsSmi] = list(set(preRsSmiRxnid[_preRsSmi]))
else:
preRsSmiRxnid[_preRsSmi] = preRsSmi_patID_Dic[preRsSmi_patID_Dic.keys()[g]]
else:
preRsSmiRxnid = dict()
_preRsSmi = ".".join(sorted(preRsSmi_patID_Dic.keys()[g].split(".")))
preRsSmiRxnid[_preRsSmi] = preRsSmi_patID_Dic[preRsSmi_patID_Dic.keys()[g]]
prePsSmi_preRsSmiRxnid[prePsSmi] = preRsSmiRxnid
#{'ps':{'rs':[id]}}
else:
continue
if bool(prePsSmi_preRsSmiRxnid):
currenttime = time.strftime(r'%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
resultDir = "./preResult/%s/" % currenttime
if not os.path.exists(resultDir):
os.makedirs(resultDir)
it = 0
preResultsDic = defaultdict()
f=open(os.path.join(resultDir+"result.txt"),"w")
f.write('query : '+queryRsSmi+'\n')
for ps,rsinfo in prePsSmi_preRsSmiRxnid.items():
for rs,idlist in rsinfo.items():
smirks = rs+">>"+ps
it += 1
line1 = "predicted reaction smirks : %s" % it
f.write(line1+"\n"+"Smirks:"+smirks+"\n")
with open(os.path.join(resultDir+str(it))+".smi","w") as smif:
smif.write(smirks)
if Draw:
rxnSmiFile = os.path.join(resultDir+str(it)+".smi")
rxnImagefile = os.path.join(resultDir+str(it)+".png")
DrawImage(rxnSmiFile,rxnImagefile)
preResultsDic[it] = dict()
preResultsDic[it]["Smikrs"] = smirks
ref = 0
for _id in idlist:
ref+=1
preResultsDic[it]["Ref Rxn|Ec|Similarity %s" % ref] = str([_id,rhea_ECAssigner[_id]["ecnumber"],max(ridSubSimilarity[_id].values())])
line2 = "Ref%s Rxnid:%s Ec:%s Similarity:%s " % (ref,_id,str(rhea_ECAssigner[_id]["ecnumber"]),max(ridSubSimilarity[_id].values()))
f.write(line2+"\n")
if CALSIMI:
preResultsDic[it].update(ridSubSimilarity[_id])
for sub,val in ridSubSimilarity[_id].items():
f.write("--Substrate:"+sub+"\n"+"--Similarity:"+str(val)+"\n")
f.write("-"*100+"\n")
f.close()
rs_smilarity = dict()
for _id,rssimi in ridSubSimilarity.items():
rs_smilarity[_id] = str(max(rssimi.values()))
with open(os.path.join(resultDir,'result.json'),"w") as f1:
json.dump(preResultsDic,f1,indent = 2)
with open(os.path.join(resultDir,'similarity.txt'),"w") as f2:
f2.writelines(":".join(list(x))+"\n" for x in arrange(rs_smilarity))
print "总迭代次数 = ",n
else:
print "No ReSult"
def splitPat(rid,item,ridPatRsPs):
ridPatRsPs[rid] = dict()
_ridPatRs = item["pat"].split(">>")[0].split(".")
_ridPatPs = item["pat"].split(">>")[1].split(".")
ridPatRs = list()
ridPatPs = list()
_PatDic = {"rs":_ridPatRs,"ps":_ridPatPs}
PatDic = {"rs":ridPatRs,"ps":ridPatPs}
for t,pat in _PatDic.items():
for i,s in enumerate(pat):
num1 = s.count("(")
num2 = s.count(")")
if num1 == num2:
PatDic[t].append(s)
elif num1 > num2:
PatDic[t].append("&"+pat[i]+"."+pat[i+1])
else:
pass
ridPatRsPs[rid]["patrs"] = ridPatRs
ridPatRsPs[rid]["patps"] = ridPatPs
def RidPatRsPs(Ec = False):
ridPatRsPs = defaultdict()
Rid_EcAndPattern = json.load(open("./Rid_EcAndPattern.json"))
for rid,item in Rid_EcAndPattern.items():
if Ec:
contain = False
ecList = item["Ec"]
for ec in ecList:
if str(ec).startswith(str(Ec)):
contain = True
if contain:
splitPat(rid,item,ridPatRsPs)
else:
continue
else:
splitPat(rid,item,ridPatRsPs)
with open("./ridPatRsPs.json","w") as f:
json.dump(ridPatRsPs,f,indent = 2)
return ridPatRsPs
def InitialiseNeutralisationReactions():
patts= (
# Imidazoles
('[n+;H]','n'),
# Amines
('[N+;!H0]','N'),
# Carboxylic acids and alcohols ('[$([O-]);!$([O-][#7])]','O'), # Thiols
('[S-;X1]','S'),
# Sulfonamides
('[$([N-;X2]S(=O)=O)]','N'),
# Enamines
('[$([N-;X2][C,N]=C)]','N'),
# Tetrazoles
('[n-]','[nH]'),
# Sulfoxides
('[$([S-]=O)]','S'),
# Amides
('[$([N-]C=O)]','N'),
#
('[O-;X1]',"O"),
#
('[$([O-]=C)]','O')
)
return [(Chem.MolFromSmarts(x),Chem.MolFromSmiles(y,False)) for x,y in patts]
_reactions=None
def NeutraliseCharges(smiles, reactions=None):
global _reactions
if reactions is None:
if _reactions is None:
_reactions=InitialiseNeutralisationReactions()
reactions=_reactions
mol = Chem.MolFromSmiles(smiles)
if not mol:
mol = Chem.MolFromSmarts(smiles)
replaced = False
for i,(reactant, product) in enumerate(reactions):
while mol.HasSubstructMatch(reactant):
replaced = True
rms = AllChem.ReplaceSubstructs(mol, reactant, product)
mol = rms[0]
if replaced:
return (Chem.MolToSmiles(mol,True), True)
else:
return (smiles, False)
def similar(smiles1,smiles2):
smiles1_mol = mfsmi(smiles1)
if not bool(smiles1_mol):
smiles1_mol = mfsma(smiles1)
smiles2_mol = mfsmi(smiles2)
if not bool(smiles2_mol):
smiles2_mol = mfsma(smiles2)
refmolfp = FingerprintMols.FingerprintMol(smiles1_mol)
molfp = FingerprintMols.FingerprintMol(smiles2_mol)
similarity = DataStructs.FingerprintSimilarity(refmolfp,molfp)
return similarity
def arrange(dic):
array = sorted(dic.iteritems(),key=lambda t:t[1],reverse=True)
return array
def DrawImage(rxnSmiFile,rxnImagefile):
command='/Applications/ChemAxon/MarvinBeans/bin/molconvert png:w1600,h800 '+ rxnSmiFile+ ' -o '+ rxnImagefile
os.popen(command)
return rxnImagefile
def testSmi(sm='',rxn =''):
if sm:
mol = mfsma(sm)
if mol:
print "smi correct"
else:
print "smi error"
if rxn:
rule = AllChem.ReactionFromSmarts(rxn)
if rule:
print "pattern correct"
else:
print "pattern error"
def main():
start = time.strftime(r'%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
queryRsSmi = 'CSC'
BioReactor(queryRsSmi,queryPsSmi=False,Ec=False,CALSIMI=True,Draw=False)
end = time.strftime(r'%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
print start
print end
if __name__ == "__main__":
main()