-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrxnpool20161206.py
714 lines (543 loc) · 27.2 KB
/
rxnpool20161206.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# !/usr/bin/python
# _*_ coding:utf-8 _*_
# 2016/08/04
# Author:LingWu
# Email:wu_l@tib.cas.cn
import os
import json
import itertools
import copy
import time
from collections import defaultdict
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
from rdkit.Chem import DataStructs
from rdkit.Chem import MolFromSmarts as mfsma
from rdkit.Chem import MolFromSmiles as mfsmi
from rdkit.Chem import MolToSmarts as mtsma
from rdkit.Chem import MolToSmiles as mtsmi
from rdkit.Chem.AllChem import ReactionFromSmarts as rxnfsma
from rdkit.Chem.Fingerprints import FingerprintMols
def BioReactor(queryRsSmi,queryPsSmi=False,Ec=False,Draw=False):
Rid_EcAndPattern = json.load(open("./Rid_EcAndPattern.json"))
rhea_ECAssigner = json.load(open("./rhea_ECAssigner.json"))
ridPatRsPs = RidPatRsPs(Ec)
prePsSmi_preRsSmiRxnid= defaultdict()
ridSubSimilarity = dict()
queryRsMol= mfsmi(queryRsSmi)
(n,m,k) = (0,0,0)
for rid,Pat in ridPatRsPs.items():
n += 1
SamepatId = Rid_EcAndPattern[rid]["SamepatId"].keys()
SamepatId.append(rid)
hasSmirks = False
for _rid in SamepatId:
try:
smirks = rhea_ECAssigner[rid]["smirks"]
hasSmirks = True
except:
continue
if not hasSmirks:
continue
patRsSmi = [str(pat) for pat in Pat["patrs"]]
Num = int(len(patRsSmi)-1)
queryPosition = list()
for a,pa_rs_smi in enumerate(patRsSmi):
has = pa_rs_smi.startswith("&")
if has:
pa_rs_smi = pa_rs_smi.split("(",1)[1].rsplit(")",1)[0].split(".")
pa_rs_mol = [mfsma(smi) for smi in pa_rs_smi]
else:
pa_rs_mol= mfsma(pa_rs_smi)
if (not has and queryRsMol.HasSubstructMatch(pa_rs_mol)) or \
( has and queryRsMol.HasSubstructMatch(pa_rs_mol[0]) and queryRsMol.HasSubstructMatch(pa_rs_mol[1])):
m += 1
queryPosition.append(a)
if queryPosition:
preRsSmi_patID_Dic = dict()
for patID in SamepatId:
patID = str(patID)
try:
origRxnSmirks = rhea_ECAssigner[patID]["smirks"]
except:
continue
_origRxnRsSmi =[str(smi) for smi in origRxnSmirks.split(">>")[0].split(".")]
origRxnRsSmi = copy.deepcopy(_origRxnRsSmi)
for b,b_origrs in enumerate(_origRxnRsSmi):
if b_origrs == "[H+]":
origRxnRsSmi.remove(b_origrs)
elif b_origrs == "[H]O[H]":
origRxnRsSmi[b] = "[OH2]"
if len(origRxnRsSmi) != len(patRsSmi):
continue
origRsPosition = dict()
repeat = 0
for c,c_origrs in enumerate(origRxnRsSmi):
if c_origrs not in origRsPosition.keys():
origRsPosition[c_origrs] = list()
else:
repeat += 1
c_origrs = c_origrs+'$%s' % repeat
origRsPosition[c_origrs] = list()
if c_origrs.count('$') == 0:
for d,d_sub in enumerate(patRsSmi):
has = d_sub.startswith('&')
if not has :
c_origrs_mol = mfsmi(c_origrs)
if not bool(c_origrs_mol):
c_origrs_mol = mfsma(c_origrs)
hasSub = c_origrs_mol.HasSubstructMatch(mfsma(d_sub))
if hasSub:
origRsPosition[c_origrs].append(d)
else:
d_sub_listsmi = d_sub.split('(',1)[1].rsplit(')',1)[0].split('.')
hasSub = True
for dsub in d_sub_listsmi:
if not mfsmi(c_origrs).HasSubstructMatch(mfsma(dsub)):
hasSub = False
if hasSub:
origRsPosition[c_origrs].append(d)
else:
origRsPosition[c_origrs] = origRsPosition[c_origrs.split('$')[0]]
for po in queryPosition:
preRsSmi = range(len(patRsSmi))
preRsSmi[po] = queryRsSmi
for origrs,polist in origRsPosition.items():
_polist = copy.deepcopy(polist)
for _po in polist:
if _po == po :
_polist.remove(po)
if not _polist:
del(origRsPosition[origrs])
# if CALSIMI :
if patID not in ridSubSimilarity.keys():
ridSubSimilarity[patID] = dict()
if origrs.count('$') != 0:
origrs = origrs.split('$')[0]
ridSubSimilarity[str(patID)][origrs] = similar(origrs,queryRsSmi)
else:
origRsPosition[origrs] = _polist
if len(origRsPosition.keys()) == Num:
remainOrigRsPoCombin = [x for x in list(itertools.product(*origRsPosition.values())) if len(set(x)) == Num] #1
for remainOrignRsPo in remainOrigRsPoCombin:
preRsSmiNew = copy.deepcopy(preRsSmi)
for e,e_po in enumerate(remainOrignRsPo):
e_key_origRsPosition = origRsPosition.keys()[e]
if e_key_origRsPosition.count('$') != 0:
_e_key_origRsPosition = e_key_origRsPosition.split('$')[0]
preRsSmiNew[e_po] = _e_key_origRsPosition
else:
preRsSmiNew[e_po] = e_key_origRsPosition
preRsSmiNew = ".".join(preRsSmiNew)
if preRsSmiNew not in preRsSmi_patID_Dic.keys():
preRsSmi_patID_Dic[preRsSmiNew] = list()
preRsSmi_patID_Dic[preRsSmiNew].append(patID)
else:
remainOrigRsCombin =list(itertools.combinations(origRsPosition.keys(),Num))
for remainOrigRs in remainOrigRsCombin:
remainOrigRsPoSet = [origRsPosition[x] for x in remainOrigRs]
if len(reduce(lambda x,y:set(x)|set(y),remainOrigRsPoSet)) != Num:
continue
_origRsPosition = copy.deepcopy(origRsPosition)
[_origRsPosition.pop(z) for z in origRsPosition.keys() if z not in remainOrigRs]
left = list(set(origRsPosition.keys())-set(remainOrigRs))[0]
# if CALSIMI :
if patID not in ridSubSimilarity.keys():
ridSubSimilarity[patID] = dict()
if left.count("$") != 0:
left = left.split('$')[0]
ridSubSimilarity[str(patID)][left] = similar(left,queryRsSmi)
remainOrigRsPoCombin = [q for q in list(itertools.product(*_origRsPosition.values())) if len(set(q)) == Num]
for remainOrignRsPo in remainOrigRsPoCombin:
preRsSmiNew = copy.deepcopy(preRsSmi)
for f,f_po in enumerate(remainOrignRsPo):
f_key_origRsPosition = _origRsPosition.keys()[f]
if f_key_origRsPosition.count('$') != 0:
_f_key_origRsPosition = f_key_origRsPosition.split('$')[0]
preRsSmiNew[f_po] = _f_key_origRsPosition
else:
preRsSmiNew[f_po] = f_key_origRsPosition
preRsSmiNew = ".".join(preRsSmiNew)
if preRsSmiNew not in preRsSmi_patID_Dic.keys():
preRsSmi_patID_Dic[preRsSmiNew] = list()
preRsSmi_patID_Dic[preRsSmiNew].append(patID)
reaction = rxnfsma(str(Rid_EcAndPattern[rid]["pat"]))
preRsMol_list = [[mfsmi(y) for y in z.split(".")] for z in preRsSmi_patID_Dic.keys()]
for g,preRsMol in enumerate(preRsMol_list):
prePsMol_tuple = reaction.RunReactants(preRsMol)
for prePsMol in prePsMol_tuple:
if bool(prePsMol):
if queryPsSmi:
pshassub = False
pssub = mfsma(queryPsSmi)
for psmol in prePsMol:
psmol = mfsmi(mtsmi(psmol)) #modified@20161206
if psmol: #modified@20161206
if psmol.HasSubstructMatch(pssub):
pshassub = True
else:
pshassub = True
if pshassub:
prePsSmi = sorted([NeutraliseCharges(mtsmi(h))[0] for h in list(prePsMol)])
prePsSmi = ".".join(prePsSmi)
if prePsSmi in prePsSmi_preRsSmiRxnid:
preRsSmiRxnid = prePsSmi_preRsSmiRxnid[prePsSmi]
_preRsSmi = ".".join(sorted(preRsSmi_patID_Dic.keys()[g].split(".")))
if _preRsSmi in preRsSmiRxnid.keys():
_preRsSmi_idList = preRsSmi_patID_Dic[preRsSmi_patID_Dic.keys()[g]]
for _preRsSmi_id in _preRsSmi_idList:
if _preRsSmi_id not in preRsSmiRxnid[_preRsSmi]:
preRsSmiRxnid[_preRsSmi].append(_preRsSmi_id)
else:
preRsSmiRxnid[_preRsSmi] = preRsSmi_patID_Dic[preRsSmi_patID_Dic.keys()[g]]
else:
preRsSmiRxnid = dict()
_preRsSmi = ".".join(sorted(preRsSmi_patID_Dic.keys()[g].split(".")))
preRsSmiRxnid[_preRsSmi] = preRsSmi_patID_Dic[preRsSmi_patID_Dic.keys()[g]]
prePsSmi_preRsSmiRxnid[prePsSmi] = preRsSmiRxnid
#{'ps':{'rs':[id]}}
else:
continue
#存结果
if bool(prePsSmi_preRsSmiRxnid):
currenttime = time.strftime(r'%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
resultDir = "./preResult/%s/" % currenttime
if not os.path.exists(resultDir):
os.makedirs(resultDir)
it = 0
preResultsDic = defaultdict()
f=open(os.path.join(resultDir+"result.txt"),"w")
f.write('query : '+queryRsSmi+'\n')
f.write("-"*100+"\n")
rangeIndex = dict()
for ps,rsinfo in prePsSmi_preRsSmiRxnid.items():
for rs,idlist in rsinfo.items():
idlist = list(set(idlist))
smirks = rs+">>"+ps
it += 1
#文本文件保存
line1 = "predicted reaction smirks : %s" % it
f.write(line1+"\n"+"Smirks:"+smirks+"\n")
if Draw:
with open(os.path.join(resultDir+str(it))+".smi","w") as smif:
smif.write(smirks)
rxnSmiFile = os.path.join(resultDir+str(it)+".smi")
rxnImagefile = os.path.join(resultDir+str(it)+".png")
DrawImage(rxnSmiFile,rxnImagefile)
preRxnNum = 'predictedReaction %s' % it
preResultsDic[preRxnNum] = dict()
preResultsDic[preRxnNum]["Smikrs"] = smirks
ref = 0
for _id in idlist:
ref+=1
preResultsDic[preRxnNum]['ref %s' % ref] = dict()
preResultsDic[preRxnNum]['ref %s' % ref]['rxnId'] = _id
preResultsDic[preRxnNum]['ref %s' % ref]['ecNum'] = rhea_ECAssigner[_id]["ecnumber"]
preResultsDic[preRxnNum]['ref %s' % ref]['maxSi'] = max(ridSubSimilarity[_id].values())
preResultsDic[preRxnNum]['ref %s' % ref]['subSi'] = ridSubSimilarity[_id]
line2 = "Ref%s Rxnid:%s Ec:%s Similarity:%s " % (ref,_id,str(rhea_ECAssigner[_id]["ecnumber"]),max(ridSubSimilarity[_id].values()))
f.write(line2+"\n")
for sub,val in ridSubSimilarity[_id].items():
f.write("--Substrate:"+sub+"\n"+"--Similarity:"+str(val)+"\n")
rangeIndex[preRxnNum] = max([preResultsDic[preRxnNum][r]['maxSi']for r in preResultsDic[preRxnNum].keys() if r.count('ref')]) #用来排序
f.write("-"*100+"\n")
f.close()
rs_smilarity = dict()
for _id,rssimi in ridSubSimilarity.items():
rs_smilarity[_id] = str(max(rssimi.values()))
rangeIndex = sorted(rangeIndex.iteritems(),key = lambda t:t[1],reverse = True)
with open(os.path.join(resultDir,'range.json'),"w") as f3:
json.dump(rangeIndex,f3,indent = 2)
with open(os.path.join(resultDir,'result.json'),"w") as f1:
json.dump(preResultsDic,f1,indent = 2)
with open(os.path.join(resultDir,'similarity.txt'),"w") as f2:
f2.writelines(":".join(list(x))+"\n" for x in arrange(rs_smilarity))
print "总迭代次数 = ",n
else:
print "No ReSult"
def customize(Rs,Pattern,queryPsSmi=False):
patOK = True
for pat in Pattern:
try:
pat = rxnfsma(pat)
except Exception,e :
patOK = False
return ('Input Rules error',pat,Exception,':',e)
break
if patOK:
preRsSmiList = list(itertools.product(*Rs))
preRsMolList = [[mfsmi(i) for i in j] for j in preRsSmiList]
prePsSmi_preRsSmi_pat = dict()
for pat in Pattern:
patRs = pat.split('>>')[0].split('.')
if len(patRs) == len(Rs):
reaction = rxnfsma(pat)
for a,preRsMol in enumerate(preRsMolList):
prePsMol_tuple = reaction.RunReactants(preRsMol)
for prePsMol in prePsMol_tuple:
if bool(prePsMol):
if queryPsSmi:
pshassub = False
pssub = mfsma(queryPsSmi)
for psmol in prePsMol:
psmol = mfsmi(mtsmi(psmol)) #modified@20161206
if psmol: #modified@20161206
if psmol.HasSubstructMatch(pssub):
pshassub = True
else:
pshassub = True
if pshassub:
prePsSmi = sorted([NeutraliseCharges(mtsmi(h))[0] for h in list(prePsMol)])#得到smile格式的其中一种产物组合,list形式,并对产物进行去电荷处理,方便后期去重
prePsSmi = ".".join(prePsSmi)
preRsSmi = ".".join(sorted(preRsSmiList[a]))
if prePsSmi in prePsSmi_preRsSmi_pat.keys():
preRsSmi_pat = prePsSmi_preRsSmi_pat[prePsSmi]
if preRsSmi in preRsSmi_pat.keys():
preRsSmi_pat[preRsSmi].append(pat)
else:
patList = list()
patList.append(pat)
preRsSmi_pat[preRsSmi] = patList
else:
prePsSmi_preRsSmi_pat[prePsSmi] = dict()
patList = list()
patList.append(pat)
prePsSmi_preRsSmi_pat[prePsSmi][preRsSmi] = patList
else:
return('Input reactants not equal Rule\'s','Rule:',pat)
with open('./customize.json','w') as fn:
json.dump(prePsSmi_preRsSmi_pat,fn,indent = 2)
f = open('./customize.txt','w')
num = 0
for ps,rsitems in prePsSmi_preRsSmi_pat.items():
for rs,patList in rsitems.items():
smirks = rs + '>>' + ps
num += 1
f.write('PredictedSmirks %s:' % num + '\t' + smirks + '\n')
for pat in patList:
f.write('Reference Rule:'+ '\t' + pat + '\n')
f.write('-'*100 + '\n')
f.flush()
f.close()
def splitPat(rid,item,ridPatRsPs):
ridPatRsPs[rid] = dict()
_ridPatRs = item["pat"].split(">>")[0].split(".")
_ridPatPs = item["pat"].split(">>")[1].split(".")
ridPatRs = list()
ridPatPs = list()
_PatDic = {"rs":_ridPatRs,"ps":_ridPatPs}
PatDic = {"rs":ridPatRs,"ps":ridPatPs}
for t,pat in _PatDic.items():
for i,s in enumerate(pat):
num1 = s.count("(")
num2 = s.count(")")
if num1 == num2:
PatDic[t].append(s)
elif num1 > num2:
PatDic[t].append("&"+pat[i]+"."+pat[i+1]) #此处对于(CCC.CCC)一个分子内含有两个片段的rs 做一个标记,方便后期使用识别
else: #当num1<num2时,前一个s 一定是num1>num2,已经被添加进去
pass
ridPatRsPs[rid]["patrs"] = ridPatRs
ridPatRsPs[rid]["patps"] = ridPatPs
def RidPatRsPs(Ec = False):
'''#构建一个{rid1:{patrs:list,patps:list},rid2:{patrs:list,patps:list},}的字典'''
ridPatRsPs = defaultdict()
Rid_EcAndPattern = json.load(open("./Rid_EcAndPattern.json")) #加载反应ID对应的反应Patterns,Smirks,Ec等信息
for rid,item in Rid_EcAndPattern.items(): #将patterns拆分为反应物和产物两部分的列表
if Ec:
contain = False
ecList = item["Ec"]
for ec in ecList:
if str(ec).startswith(str(Ec)):
contain = True
if contain:
splitPat(rid,item,ridPatRsPs)
else:
continue
else:
splitPat(rid,item,ridPatRsPs)
with open("./ridPatRsPs.json","w") as f:
json.dump(ridPatRsPs,f,indent = 2)
return ridPatRsPs
def InitialiseNeutralisationReactions():
#构建需要replace的带电原子类型与其对应的中性原子的pair对
patts= (
# Imidazoles
('[n+;H]','n'),
# Amines
('[N+;!H0]','N'),
# Carboxylic acids and alcohols ('[$([O-]);!$([O-][#7])]','O'), # Thiols
('[S-;X1]','S'),
# Sulfonamides
('[$([N-;X2]S(=O)=O)]','N'),
# Enamines
('[$([N-;X2][C,N]=C)]','N'),
# Tetrazoles
('[n-]','[nH]'),
# Sulfoxides
('[$([S-]=O)]','S'),
# Amides
('[$([N-]C=O)]','N'),
#
('[O-;X1]',"O"),
#
('[O+;X3]',"O"),
#
('[$([O-]=C)]','O'),
)
return [(Chem.MolFromSmarts(x),Chem.MolFromSmiles(y,False)) for x,y in patts]
_reactions=None
def NeutraliseCharges(smiles, reactions=None):
global _reactions
if reactions is None: #默认不输入
if _reactions is None:
_reactions=InitialiseNeutralisationReactions()
reactions=_reactions #reactions引入带电原子类型与其对应的中性原子的pair对表单函数
mol = mfsmi(smiles)
#判断Chem.MolFromSmiles是否成功读取smile,如没有换成smarts读取
#例如“NC(=O)c1cccn(c1)C1OC(COP(=O)([O-])OP(=O)([O-])OCC2OC(C(O)C2O)n2cnc3c(N)ncnc32)C(O)C1O”
if not mol:
mol = mfsma(smiles)
if not mol:
return None
else:
replaced = False
for i,(reactant, product) in enumerate(reactions):
while mol.HasSubstructMatch(reactant): #一直循环至不含该带电原子
replaced = True
rms = AllChem.ReplaceSubstructs(mol, reactant, product) #ReplaceSubstructures可选择Replacement = True(默认为False)一步替换所有
mol = rms[0] #rms是一个tuple,内含多个重复的mol,原因不明
if replaced:
return (mtsmi(mol), True)
else:
return (mtsmi(mol), False)
def similar(smiles1,smiles2):
smiles1_mol = mfsmi(smiles1)
if not bool(smiles1_mol):
smiles1_mol = mfsma(smiles1)
smiles2_mol = mfsmi(smiles2)
if not bool(smiles2_mol):
smiles2_mol = mfsma(smiles2)
refmolfp = FingerprintMols.FingerprintMol(smiles1_mol)
molfp = FingerprintMols.FingerprintMol(smiles2_mol)
similarity = DataStructs.FingerprintSimilarity(refmolfp,molfp)
return similarity
def arrange(dic):
array = sorted(dic.iteritems(),key=lambda t:t[1],reverse=True)
return array
def DrawImage(rxnSmiFile,rxnImagefile):
command='/Applications/ChemAxon/MarvinBeans/bin/molconvert png:w1600,h800 '+ rxnSmiFile+ ' -o '+ rxnImagefile
os.popen(command)
return rxnImagefile
def Testsmi(sm='',rxn =''):
if sm:
mol = mfsma(sm)
if mol:
print "smi correct"
else:
print "smi error"
if rxn:
rule = AllChem.ReactionFromSmarts(rxn)
if rule:
print "pattern correct"
else:
print "pattern error"
def standSmiNameId():
ChEBISmiName = json.load(open('./ChEBISmi_NameId.json'))
StandSmiName = dict()
for smi,name in ChEBISmiName.items():
standSmi = NeutraliseCharges(smi)
if not standSmi:
standSmi = smi #如果标准化不成功,则还是用原来的smiles
else:
standSmi = standSmi[0]
StandSmiName[standSmi] = name
with open('./StandSmi_NameId.json','w') as f1:
json.dump(StandSmiName,f1,indent = 2)
return StandSmiName
def smirks2rxnName(smirks,StandSmiName):
newCPSmiId = json.load(open('./newCPSmiId.json'))
rs = [i.strip() for i in smirks.split('>>')[0].split('.')]
ps = [j.strip() for j in smirks.split('>>')[1].split('.')]
_rs = list(set(rs))
_ps = list(set(ps))
coefRs = list();coefRsName = list();coefRsId = list()
coefPs = list();coefPsName = list();coefPsId = list()
index = {'0':rs,'1':ps}
index1 = {'0':coefRs,'1':coefPs}
index2 = {'0':coefRsName,'1':coefPsName}
index3 = {'0':coefRsId,'1':coefPsId}
for m,it in enumerate([_rs,_ps]):
for s in it:
num = index[str(m)].count(s)
stand_s = NeutraliseCharges(s)
if not stand_s: #如果标准化不成功,则还是用原来的smiles
stand_s = s
else:
stand_s = stand_s[0]
try:
sName = StandSmiName[stand_s]["ChEBI Name"]
sId = StandSmiName[stand_s]["ChEBI ID"][0]
except:
if stand_s in newCPSmiId.keys():
sName = newCPSmiId[stand_s]
sId = newCPSmiId[stand_s]
else:
maxid = max([int(i.split('W')[1]) for i in newCPSmiId.values()])
sName = 'W' + str(maxid+1)
newCPSmiId[stand_s] = sName
sId = sName
if num != 1:
index1[str(m)].append(str(num) + ' ' + stand_s)
index2[str(m)].append(str(num) + ' ' + str(sName))
index3[str(m)].append(str(num) + ' ' + str(sId))
else:
index1[str(m)].append(stand_s)
index2[str(m)].append(str(sName))
index3[str(m)].append(str(sId))
coefSmirks =' + '.join(coefRs)+ ' >> ' + ' + '.join(coefPs)
coefrxnName =' + '.join(coefRsName) + ' >> ' +' + '.join(coefPsName)
coefrxnId =' + '.join(coefRsId)+ ' >> ' + ' + '.join(coefPsId)
end1 = time.strftime(r'%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
with open('./newCPSmiId.json','w') as fn:
json.dump(newCPSmiId,fn,indent = 2)
return (coefSmirks,coefrxnName,coefrxnId)
def mainRxn(queryRsSmi,resultFilePath,saveFilePath):
queryPreMainCpRxn = dict()
preRxns = json.load(open(resultFile))
for preRxn,it in preRxns.items():
rxn_ps = [NeutraliseCharges(i)[0] for i in it["Smikrs"].split('>>')[1].split('.')]
psSmi = dict()
maxSmi = 0
maxSmiPs = ''
for ps in rxn_ps:
sim = similar(NeutraliseCharges(queryRsSmi)[0],ps)
if sim > maxSmi:
maxSmi = sim
maxSmiPs = ps
queryPreMainCpRxn[maxSmiPs] = dict()
queryPreMainCpRxn[maxSmiPs]['Similarity'] = maxSmi
if preRxn not in queryPreMainCpRxn[maxSmiPs].keys():
queryPreMainCpRxn[maxSmiPs]['preRxn'] = list()
queryPreMainCpRxn[maxSmiPs]['preRxn'].append(preRxn)
with open(os.path.join(saveFilePath,'queryPreMainCpRxn.json'),'w')as fn:
json.dump(queryPreMainCpRxn,fn,indent = 2)
def main():
start = time.clock()
# queryRsSmi ="C(C1C(C(C(C(O1)O)O)O)O)O"
# queryPsSmi ="C(C1C(C(C(C(O1)O)O)O)O)O.C(C1C(C(C(C(O1)O)O)O)O)O"
# queryRsSmi ="C1=CC2C(C1)C1CC2C=C1"
# queryPsSmi ="C1CC2C(C1)C1CC2CC1"
# queryRsSmi ="c1ccccc1C=O"
# queryPsSmi ="c1ccccc1C=O[OH]"
# queryRsSmi ="OCCCCO"
# queryPsSmi ="[OH][CH2][CH2][CH2][CH]=[O]"
# queryRsSmi ="CO[C@H]1C[C@@H](OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H](C[C@@H]2O)n2cc(C)c(=O)[nH]c2=O)O[C@@H](C)[C@@H]1O"
queryRsSmi ="CSC"
queryPsSmi =""
BioReactor(queryRsSmi,queryPsSmi,Ec = False,Draw=True)
end = time.clock()
print (end - start)
if __name__ == "__main__":
main()