-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
247 lines (206 loc) · 8.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# //Developing a face recognition system\\
from pyfftw.interfaces.numpy_fft import hfft
from matplotlib import pyplot as plt
from scipy.fftpack import dct
import numpy as np
import random
import time
import cv2
"""Some global parameters"""
im_count = 1 # Count of image of each person
scale_percent = 20 # The percent of image (20% it is 20/100 = 1/5 of image)
his_bin = 32 # Histogram bin
psz = 4 # The count of division (4x4 = 16 psz)
# The sizes of image
img_size = cv2.imread('archive\\s1\\1.pgm', 0)
(height, width) = img_size.shape
p = 550 # The count of random points
pxl = [[random.randrange(0, height), random.randrange(0, width)] for i in range(p)] # The array of p random point
# Outputting
start_time = time.time()
fig, ((test, ax1, ax2, ax3, ax4, ax5), (etalon, ax6, ax7, ax8, ax9, ax10)) = \
plt.subplots(nrows=2, ncols=6, figsize=(9, 6), num='Face_Recognition', subplot_kw={'xticks': [], 'yticks': []})
ax_list = [(ax1, ax2, ax3, ax4, ax5), (ax6, ax7, ax8, ax9, ax10)]
title_list = ("LBPH", "SCALE", "DCT", "FFT", "RANDOM_PXL")
correct = cv2.resize(cv2.imread('green.jpg', cv2.IMREAD_COLOR), (width, height))
incorrect = cv2.resize(cv2.imread('red.jpg', cv2.IMREAD_COLOR), (width, height))
class Person:
def __init__(self, i, j):
"""Vector of methods for image"""
self.img = cv2.imread('archive\\s%d\\%d.pgm' % (i, j), 0)
self.name = "s%d" % i
self.lbp_img = get_lbph(self.img)
self.scale, self.FFT, self.DCT = get_scale(self.img, width, height)
self.lbph = get_histogram(self.lbp_img)
self.random_pxl, self.pxl_img = get_random_pxl(self.img)
# Form for calculating
self.get_from = [self.lbph, self.scale, self.DCT, self.FFT, self.random_pxl]
# Form for outputting
self.out_form = [self.lbp_img, self.scale, self.DCT, self.FFT, self.pxl_img, self.img]
def get_lbph(img):
"""Create lbp_image"""
img_lbp = np.zeros((height, width), dtype=np.uint8)
for i in range(2, height-2): # Delete uninformative frame of image
for j in range(2, width-2):
if i % 2 == 0 and j % 10 != 0:
img_lbp[i, j] = lbp_calculated_pixel(img, i, j)
else:
img_lbp[i, j] = img[i, j]
return img_lbp
def get_scale(img, w, h):
# Scale
new_h = int(h * scale_percent / 100)
new_w = int(w * scale_percent / 100)
output = np.array(cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR), np.uint8)
# FFT + Scale(as optimization)
f = np.array(hfft(output).real, dtype=np.float64)
f_shift = np.fft.fftshift(f)
size = [6, 5] # the best constants
output1 = np.zeros((2*size[0], 2*size[1]), dtype=np.float64)
"""Take the most informative part of fft (center)"""
a, b = 0, 0
for i in range(len(f_shift) // 2 - size[0], len(f_shift) // 2 + size[0]):
for j in range(len(f_shift[0]) // 2 - size[1], len(f_shift[0]) // 2 + size[1]):
output1[a][b] = f_shift[i][j]
b += 1
a += 1
b = 0
# DCT + Scale(as optimization)
f = np.array(dct(output, type=2, n=new_h - new_h % 10), dtype=np.float64)
output2 = np.zeros((len(f), len(f[0] // 2)), dtype=np.float64)
"""Take the most informative part of dct (first columns)"""
for i in range(len(f)):
for j in range(len(f[0]) // 2):
output2[i][j] = f[i][j]
return output, output1, output2
def get_random_pxl(img):
"""Take random points"""
rgb_img = np.array(cv2.cvtColor(img, 3))
arr = np.zeros(p, dtype=np.uint8)
for i in range(p):
arr[i] = img[pxl[i][0]][pxl[i][1]]
rgb_img[pxl[i][0]][pxl[i][1]] = (255, 255, 0)
return arr, rgb_img
def get_histogram(img):
"""Cut image and reckon histogram for each psz"""
psz_height = height // psz
psz_width = width // psz
box_list = []
for x in range(0, psz):
for y in range(0, psz):
cropped = img[x * psz_width:(x + 1) * psz_height, y * psz_height:(y + 1) * psz_width]
box_list.append(cv2.calcHist([cropped], [0], None, [his_bin], [0, 256]))
return box_list
def lbp_calculated_pixel(img, x, y):
"""Local Binary Pattern"""
center = img[x][y]
def get_pixel(i, j):
"""
232 | 128 | 1 1 | 1->| 0
---------------- ----------------
32 | 128 | 2 -> 0 | X | 0 -> 10000101 -> X = 133
---------------- ----------------
165 | 8 | 4 1 | 0 | 0
"""
new_value = 0
if img[i][j] >= center:
new_value = 1
return new_value
val_ar = [get_pixel(x - 1, y + 1), get_pixel(x, y + 1), get_pixel(x + 1, y + 1), get_pixel(x + 1, y),
get_pixel(x + 1, y - 1), get_pixel(x, y - 1), get_pixel(x - 1, y - 1), get_pixel(x - 1, y)]
power_val = [1, 2, 4, 8, 16, 32, 64, 128]
val = 0
for t in range(len(val_ar)):
val += val_ar[t] * power_val[t]
return val
def search(arr_names):
"""Search the best name"""
the_best_etalon = "NO"
largest = -1
for b in range(len(arr_names)):
idx = 1
for c in range(len(arr_names)):
if arr_names[b] == arr_names[c] and b != c:
match b:
case 0: idx += 79.4
case 1: idx += 74.4
case 2: idx += 74.4
case 3: idx += 74.1
case 4: idx += 73
if idx > largest:
largest = idx
the_best_etalon = arr_names[b]
return the_best_etalon
def make_empty():
"""Clean window"""
for j in range(2):
for i in range(len(ax_list[j])):
ax_list[j][i].imshow(np.zeros((height, width), dtype=int), cmap='gray')
if j:
ax_list[j][i].set_title("")
def main():
global data
not_count = 0
count = 0
i = 1
while i <= 40:
j = im_count + 1
while j <= 10:
who = Person(i, j)
form = who.get_from
out = who.out_form
'''test.imshow(who.img, cmap='gray')
test.set_title("Test_img %s" % who.name)'''
# Find the best et_name for each method
make_empty()
arr_names = []
et_name = "NO"
for t in range(4, 5):
'''ax_list[0][t].imshow(out[t], cmap='gray')
ax_list[0][t].set_title(title_list[t])'''
min_dif = np.inf
a = 0
found_a = "False"
while a < im_count * 40:
et_form = data[a].get_from
et_out = data[a].out_form
'''etalon.imshow(et_out[len(et_out) - 1], cmap='gray')
etalon.set_title("Etalon_img %s" % data[a].name)
ax_list[1][t].imshow(et_out[t], cmap='gray')
ax_list[1][t].set_title("Searching...")
plt.pause(0.01)'''
difference = np.sum(np.absolute(np.subtract(form[t], et_form[t], dtype=float)))
if difference < min_dif:
min_dif = difference
found_a = a
et_name = data[a].name
a += 1
"""If we compare all images -> get result green(Right) or red(Not Right)"""
'''if a == im_count * 40:
if et_name == who.name:
mix = cv2.addWeighted(cv2.cvtColor(data[found_a].img, 3), 0.5, correct, 0.5, 0.0)
ax_list[1][t].imshow(mix)
ax_list[1][t].set_title("Found %s" % et_name)
plt.pause(0.1)
else:
mix = cv2.addWeighted(cv2.cvtColor(data[found_a].img, 3), 0.5, incorrect, 0.5, 0.0)
ax_list[1][t].imshow(mix)
ax_list[1][t].set_title("NOT Found")
plt.pause(0.1)'''
arr_names.append(et_name)
et_name = search(arr_names)
if et_name == who.name:
count += 1
else:
not_count += 1
j += 1
i += 1
print("Were found %d == %f" % (count, 100 / (400 - 40 * im_count) * count) + "%")
print("Were not found %d == %f" % (not_count, 100 / (400 - 40 * im_count) * not_count) + "%")
'''plt.tight_layout()
plt.show()'''
# Programme start
if __name__ == '__main__':
data = [Person(i, j) for i in range(1, 41) for j in range(1, im_count + 1)] # Base of etalon images
main()
print("%.2f seconds" % (time.time() - start_time))