-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesislib.py
821 lines (654 loc) · 34.9 KB
/
thesislib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
import matplotlib.pyplot as plt
from scipy.special import erfc
import pandas as pd
import numpy as np
# Low and high ends of signal-to-noise ratios for
# 32, 64, 128, and 256 QAM constellations in dB.
QAM32_SNR_LOW = 19.0
QAM64_SNR_LOW = 22.0
QAM128_SNR_LOW = 25.0
QAM256_SNR_LOW = 28.0
QAM32_SNR_HIGH = 24.0
QAM64_SNR_HIGH = 27.0
QAM128_SNR_HIGH = 30.0
QAM256_SNR_HIGH = 33.0
# B1 and B2 constants for all QAM sizes
QAM32_ADDITIVE_NOISE_C = 52.631578947368574
QAM32_SELF_NOISE_C = 3.1412742382271563
QAM64_ADDITIVE_NOISE_C = 5.8081149619611185
QAM64_SELF_NOISE_C = 0.16737109044801363
QAM128_ADDITIVE_NOISE_C = 62.06745498521905
QAM128_SELF_NOISE_C = 3.792915882827198
QAM256_ADDITIVE_NOISE_C = 6.268452209723086
QAM256_SELF_NOISE_C = 0.2019409832094356
# Generate a new 32-QAM constellation with arbitrary scale
def qam32unscaled_new():
# 6x6 square of points placed 1 unit apart
im, re = np.mgrid[-2.5:2.5:6j, -2.5:2.5:6j]
# actual signals have real part and imaginary part
qam = re + im*1j
# Remove corner points
qam = np.delete(qam, 35)
qam = np.delete(qam, 30)
qam = np.delete(qam, 5)
qam = np.delete(qam, 0)
return qam
# Generate a new 64-QAM constellation with arbitrary scale
def qam64unscaled_new():
# 8x8 square of points 1 unit apart
im, re = np.mgrid[-3.5:3.5:8j, -3.5:3.5:8j]
qam = re + im*1j
return qam.flatten()
# Generate a new 128-QAM constellation with arbitrary scale
def qam128unscaled_new():
# 12x12 grid of points 1 unit apart
im, re = np.mgrid[-5.5:5.5:12j, -5.5:5.5:12j]
qam = re + im*1j
# Remove 4 points from each corner
qam = np.delete(qam, 143)
qam = np.delete(qam, 142)
qam = np.delete(qam, 133)
qam = np.delete(qam, 132)
qam = np.delete(qam, 131)
qam = np.delete(qam, 130)
qam = np.delete(qam, 121)
qam = np.delete(qam, 120)
qam = np.delete(qam, 23)
qam = np.delete(qam, 22)
qam = np.delete(qam, 13)
qam = np.delete(qam, 12)
qam = np.delete(qam, 11)
qam = np.delete(qam, 10)
qam = np.delete(qam, 1)
qam = np.delete(qam, 0)
return qam
# Generate a new 256-QAM constellation with arbitrary scale
def qam256unscaled_new():
# 16x16 grid of points 1 unit apart
im, re = np.mgrid[-7.5:7.5:16j, -7.5:7.5:16j]
qam = re + im*1j
return qam.flatten()
# Converts a decibel value to a linear value
# input: dB - decibel value
# output: equivalent linear value
def linearize_dB(dB):
return 10**(dB / 10)
# Convert values from radians^2 to degrees^2
# input: rad2 - value in radians^2
# output: Returns the value converted to degrees^2
def rad2_to_deg2(rad2):
c = 180**2 / np.pi**2
return rad2 * c
# Calculate the N_0 number used to generate AWGN
# input: snr - signal to noise ratio in dB
# output: Value of N_0 to use in AWGN calculation
def calculate_n0(snr):
return 1 / linearize_dB(snr)
# Calculate the average energy of a M-QAM constellation
# input: qam - Numpy array representing QAM constellation
# output: Average energy of the constellation as defined in the notebook
def calc_average_energy(qam):
return np.sum(np.abs(qam)) / len(qam)
# Calculate the average power of a M-QAM constellation
# input: qam - Numpy array representing QAM constellation
# output: Average power of the constellation
def calc_average_power(qam):
return np.sum(np.abs(qam)**2) / len(qam)
# Generate a new 32-QAM constellation scaled for an average energy of 1
def qam32_new():
# 6x6 square of points placed 1 unit apart
im, re = np.mgrid[-2.5:2.5:6j, -2.5:2.5:6j]
qam = re + im*1j
# Remove corner points
qam = np.delete(qam, 35)
qam = np.delete(qam, 30)
qam = np.delete(qam, 5)
qam = np.delete(qam, 0)
# distance between points such that the average energy of the constellation is equal to 1
dist = 1 / np.sqrt(calc_average_power(qam))
return qam * dist # scale the distance between the points
# Generate a new 64-QAM constellation scaled for an average energy of 1
def qam64_new():
im, re = np.mgrid[-3.5:3.5:8j, -3.5:3.5:8j]
qam = (re + im*1j).flatten()
dist = 1 / np.sqrt(calc_average_power(qam))
return qam * dist
# Generate a new 128-QAM constellation scaled for an average energy of 1
def qam128_new():
im, re = np.mgrid[-5.5:5.5:12j, -5.5:5.5:12j]
qam = re + im*1j
qam = np.delete(qam, 143)
qam = np.delete(qam, 142)
qam = np.delete(qam, 133)
qam = np.delete(qam, 132)
qam = np.delete(qam, 131)
qam = np.delete(qam, 130)
qam = np.delete(qam, 121)
qam = np.delete(qam, 120)
qam = np.delete(qam, 23)
qam = np.delete(qam, 22)
qam = np.delete(qam, 13)
qam = np.delete(qam, 12)
qam = np.delete(qam, 11)
qam = np.delete(qam, 10)
qam = np.delete(qam, 1)
qam = np.delete(qam, 0)
dist = 1 / np.sqrt(calc_average_power(qam))
return qam * dist
# Generate a new 256-QAM constellation scaled for an average energy of 1
def qam256_new():
im, re = np.mgrid[-7.5:7.5:16j, -7.5:7.5:16j]
qam = (re + im*1j).flatten()
dist = 1 / np.sqrt(calc_average_power(qam))
return qam * dist
# Generates a 32-QAM constellation split up by energy of the points for the SML algorithm
# Returns 2D array where each element of the sub arrays are equivalent in energy (distance from origin)
def sml_qam32_new():
qam32 = qam32_new()
energies = sorted(set(np.round(np.abs(qam32), 6)))
partitioned_qam32 = np.ma.zeros((5,8)).astype(complex)
temp = [0 for _ in range(5)] # Used to keep track of how many elems in each group
# Sort each symbol into its energy level
for symbol in qam32:
level = get_closest_energy_level(energies, symbol)
partitioned_qam32[level][temp[level]] = symbol
temp[level] += 1
partitioned_qam32 = np.ma.masked_equal(partitioned_qam32, 0.) # Mask all blank values
return (partitioned_qam32, energies)
# Generates a 64-QAM constellation split up by energy of the points
def sml_qam64_new():
qam64 = qam64_new()
energies = sorted(set(np.round(np.abs(qam64), 6)))
partitioned_qam64 = np.ma.zeros((9,12)).astype(complex)
temp = [0 for _ in range(9)]
for symbol in qam64:
level = get_closest_energy_level(energies, symbol)
partitioned_qam64[level][temp[level]] = symbol
temp[level] += 1
partitioned_qam64 = np.ma.masked_equal(partitioned_qam64, 0.)
return (partitioned_qam64, energies)
# Generates a 128-QAM constellation split up by energy of the points
def sml_qam128_new():
qam128 = qam128_new()
energies = sorted(set(np.round(np.abs(qam128), 6)))
partitioned_qam128 = np.ma.zeros((16,16)).astype(complex)
temp = [0 for _ in range(16)]
for symbol in qam128:
level = get_closest_energy_level(energies, symbol)
partitioned_qam128[level][temp[level]] = symbol
temp[level] += 1
partitioned_qam128 = np.ma.masked_equal(partitioned_qam128, 0.)
return (partitioned_qam128, energies)
# Generates a 256-QAM constellation split up by energy of the points
def sml_qam256_new():
qam256 = qam256_new()
energies = sorted(set(np.round(np.abs(qam256), 6)))
partitioned_qam256 = np.ma.zeros((32,16)).astype(complex)
temp = [0 for _ in range(32)]
for symbol in qam256:
level = get_closest_energy_level(energies, symbol)
partitioned_qam256[level][temp[level]] = symbol
temp[level] += 1
partitioned_qam256 = np.ma.masked_equal(partitioned_qam256, 0.)
return (partitioned_qam256, energies)
# Read a stream from "data/qam32_samples.csv" and return it as an np array
# input: stream_name - the name of the dataframe column to return
# stream_len - the number of data points to return from the df. Everything afterwards will be truncated.
# output: Tuple containing phase offset, signal to noise ratio used to make the data, and a numpy array with stream of length stream_len
# (phase_offset, snr, signal_stream)
def stream32_from_sample(stream_name, stream_len):
data = pd.read_csv("data/qam32_samples.csv")[stream_name][0:stream_len+1] # +1 for the phase offset
data = data.map(complex) # pd reads data as strings, so this converts them to complex numbers
phase_offset = data[0].real # real part of first element in data is the phase offset
snr = data[0].imag # imaginary part of first element is the signal to noise ratio used to create the data
data = np.array(data[1:data.size]) # get rid of the phase offset in the stream data
return (phase_offset, snr, data)
# Read a stream from "data/qam32_samples.csv" and return it as an np array
# input: stream_name - the name of the dataframe column to return
# stream_len - the number of data points to return from the df. Everything afterwards will be truncated.
# output: Tuple containing phase offset, signal to noise ratio used to make the data, and a numpy array with stream of length stream_len
# (phase_offset, snr, signal_stream)
def stream64_from_sample(stream_name, stream_len):
data = pd.read_csv("data/qam64_samples.csv")[stream_name][0:stream_len+1] # +1 for the phase offset
data = data.map(complex) # pd reads data as strings, so this converts them to complex numbers
phase_offset = data[0].real # real part of first element in data is the phase offset
snr = data[0].imag # imaginary part of first element is the signal to noise ratio used to create the data
data = np.array(data[1:data.size]) # get rid of the phase offset in the stream data
return (phase_offset, snr, data)
# Read a stream from "data/qam32_samples.csv" and return it as an np array
# input: stream_name - the name of the dataframe column to return
# stream_len - the number of data points to return from the df. Everything afterwards will be truncated.
# output: Tuple containing phase offset, signal to noise ratio used to make the data, and a numpy array with stream of length stream_len
# (phase_offset, snr, signal_stream)
def stream128_from_sample(stream_name, stream_len):
data = pd.read_csv("data/qam128_samples.csv")[stream_name][0:stream_len+1] # +1 for the phase offset
data = data.map(complex) # pd reads data as strings, so this converts them to complex numbers
phase_offset = data[0].real # real part of first element in data is the phase offset
snr = data[0].imag # imaginary part of first element is the signal to noise ratio used to create the data
data = np.array(data[1:data.size]) # get rid of the phase offset in the stream data
return (phase_offset, snr, data)
# Read a stream from "data/qam32_samples.csv" and return it as an np array
# input: stream_name - the name of the dataframe column to return
# stream_len - the number of data points to return from the df. Everything afterwards will be truncated.
# output: Tuple containing phase offset, signal to noise ratio used to make the data, and a numpy array with stream of length stream_len
# (phase_offset, snr, signal_stream)
def stream256_from_sample(stream_name, stream_len):
data = pd.read_csv("data/qam256_samples.csv")[stream_name][0:stream_len+1] # +1 for the phase offset
data = data.map(complex) # pd reads data as strings, so this converts them to complex numbers
phase_offset = data[0].real # real part of first element in data is the phase offset
snr = data[0].imag # imaginary part of first element is the signal to noise ratio used to create the data
data = np.array(data[1:data.size]) # get rid of the phase offset in the stream data
return (phase_offset, snr, data)
# Rotate a set of signals by some angle
# input: signals - Numpy array of signals to rotate
# angle_degrees - angle to rotate signals in degrees
# output: New Numpy array of rotated signals
def rotated(signals, angle_degrees):
return signals * np.exp(np.radians(angle_degrees) * 1j)
# Generate AWGN
# input: snr - signal to noise ratio in dB
# k - how many samples to generate
# output: Numpy array of length k with complex AWGN
def awgn_noise(snr, k):
N0 = calculate_n0(snr)
std_dev = np.sqrt(N0 / 2.0)
noise_re = np.random.normal(0.0, std_dev, k)
noise_im = np.random.normal(0.0, std_dev, k) * 1j
return noise_re + noise_im
# Calculate the symbol error probability for N-QAM
# input: snr - signal to noise ratio in dB
# output: Symbol error probability for given snr value(s) of snr
def symbol_err_prob(N, snr):
sqrt_term = (3 * linearize_dB(snr)) / (2 * (N - 1))
return 2 * erfc(np.sqrt(sqrt_term))
# Calculate the Cramer-Rao Bound for some SNR and K
# input: snr - Signal to noise ratio in dB
# k - vector length (number of symbols sent)
# output: The cramer rao bound for the specified values in radians^2
def get_crb(snr, k):
return 1.0 / (2.0 * linearize_dB(snr) * k)
def calculate_B1(qam, P):
expected_val1 = np.mean( np.abs(qam**2) )
expected_val2 = np.mean( np.abs(qam**2)**(P-1) )
expected_val3 = np.abs( np.mean(qam**P) )**2
return expected_val1 * expected_val2 / expected_val3
def calculate_B2(qam, P):
expected_val1 = np.mean( qam**P )
expected_val2 = np.mean( np.abs(qam**2)**P )
expected_val3 = np.mean( np.conjugate(qam)**(2*P) )
expected_val4 = np.mean( np.conjugate(qam)**P )
expected_val5 = np.mean( qam**(2*P) )
return ((2 * np.abs(expected_val1)**2 * expected_val2 - expected_val1**2 * expected_val3 - expected_val4**2 * expected_val5) / (4 * P**2 * np.abs(expected_val1)**4)).real
def get_received_stream(sent_stream, phase_offset_deg, snr):
K = len(sent_stream)
noise = awgn_noise(snr, K)
return rotated(sent_stream, phase_offset_deg) + noise
# Calculate the log-likelihood function given a phase offset guess
# input: qam - the constellation being compared against
# received_stream - the set of signals received as an np array
# snr - the signal to noise ratio used to calculate the received signals (in dB)
# theta_deg - the guess of the phase offset for the received data (in degrees)
# output: The value of the log likelihood function evaluated at theta for some set of signals and constellation
"""def get_log_likelihood(qam, received_stream, snr, theta_deg):
linearized_snr = linearize_dB(snr)
log_likelihood = 0
for received_signal in received_stream:
# Rotate the received signal clockwise by the guessed theta
estimated_signal = rotated(received_signal, -theta_deg)
# Log-Likelihood function as defined in chapter 1
log_likelihood += np.log(np.sum(np.exp(-linearized_snr * np.abs(estimated_signal - qam)**2)))
return log_likelihood"""
# Vectorized Log-likelihood function, functionally the same as commented out funciton above
def get_log_likelihood(qam, received_stream, snr, theta_deg):
linearized_snr = linearize_dB(snr)
qam_size = len(qam)
k = len(received_stream)
new_received = np.array(np.split(np.repeat(received_stream, qam_size), k))
new_qam = np.tile(qam, (k,1))
inner_sums = np.sum(np.exp(-linearized_snr * np.abs(rotated(new_received, -theta_deg) - new_qam)**2), axis=1)
return np.sum(np.log(inner_sums))
# Calculate the log-likelihood function given an array of phase offset guesses
# input: qam - the constellation being compared against
# received_stream - the set of signals received as an np array
# snr - the signal to noise ratio used to calculate the received signals (in dB)
# theta_arr_deg - Numpy array of theta guesses in degrees
# output: An array of values of the log likelihood function evaluated at each respective value theta
def get_log_likelihood_arr(qam, received_stream, snr, theta_arr_deg):
arr_len = len(theta_arr_deg)
log_likelihoods = np.zeros(arr_len)
for i in range(arr_len):
log_likelihoods[i] = get_log_likelihood(qam, received_stream, snr, theta_arr_deg[i])
return log_likelihoods
# Performs a first order Newton's method to the log-likelihood function
# Performs the differentiation numerically by plugging in points with a delta
# See: https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
# input: qam - the QAM constellation np array
# received_stream - np array of received signals
# snr - signal to noise ratio in dB
# theta_guess - the initial estimate of theta that will be fine tuned by Newton's Method
# output: The new estimation for the value of theta
def newtons_method_ml(qam, received_stream, snr, theta_guess):
delta = 1e-3
y = lambda theta: get_log_likelihood(qam, received_stream, snr, theta)
# # Rise / Run
# slope1 = (y(theta_guess + delta) - y(theta_guess)) / delta
# # Calculate second slope so the 2nd derivative can be estimated
# slope2 = (y(theta_guess + 2*delta) - y(theta_guess + delta)) / delta
# second_deriv = (slope2 - slope1) / delta
# t = -slope1 / second_deriv
# This performs the same code as above, but more optimized:
y1 = y(theta_guess)
y2 = y(theta_guess + delta)
y3 = y(theta_guess + 2*delta)
t = -delta * ( (y2 - y1) / (y1 - 2*y2 + y3) ) # only 1 division required
return theta_guess + t # new guess from 1st order Newton's method
"""def newtons_methodB(qam, received_stream, snr, theta_guess):
delta = 1e-4
y = lambda theta: get_log_likelihood(qam, received_stream, snr, theta)
# Rise / Run
y1 = y(theta_guess)
y2 = y(theta_guess + delta)
t = delta * y1 / (y2 - y1)
return theta_guess + t # new guess from 1st order Newton's method"""
# Performs a second order Newton's method to the ML log-likelihood function
# (first order Newton's method applied 2x)
# input: qam - the QAM constellation np array
# received_stream - np array of received signals
# snr - signal to noise ratio in dB
# theta_guess - the initial estimate of theta that will be fine tuned by Newton's Method
# output: The new estimation for the value of theta
def second_order_newtons_method_ml(qam, received_stream, snr, theta_guess):
theta_guess = newtons_method_ml(qam, received_stream, snr, theta_guess) # 1st order
theta_guess = newtons_method_ml(qam, received_stream, snr, theta_guess) # 2nd order
if (theta_guess < 0):
theta_guess += 90
elif (theta_guess > 90):
theta_guess -= 90
return theta_guess
# Chooses a random phase offset and uses input to generate data and perform ML estimation to estimate the chose phase offset
# input: qam - QAM constellation to use
# snr - signal to noise ratio used to generate noise in dB
# k - vector length
# output: A tuple containing the true chosen phase offset, the estimatied phase offset, and the sent and received streams
def ml_estimation(qam, snr, k):
theta_guesses = np.arange(0,91,2)
phase_offset = np.random.uniform(0,90) # Choose random value for theta from [0, 90)
sent_stream = np.random.choice(qam, k)
received_stream = get_received_stream(sent_stream, phase_offset, snr)
log_likelihood_vals = get_log_likelihood_arr(qam, received_stream, snr, theta_guesses)
# Best estimate of theta based on inital 2 degree incremental evaluations of log-likelihood
best_theta_guess = theta_guesses[np.argmax(log_likelihood_vals)]
# Fine optimization using 2nd order Newton's method
best_theta_guess = second_order_newtons_method_ml(qam, received_stream, snr, best_theta_guess)
return (phase_offset, best_theta_guess, sent_stream, received_stream)
# Measures the average performence of the Maximum Likelihood estimation algorithm over a series of iterations
# input: qam - the QAM constellation to use
# snr - the signal to noise ratio in dB
# k - the vector length
# iters - how many tests to perform (1000 in paper)
# output: The average squared error for all of the iterations tested
def ml_estimation_performance_test(qam, snr, k, iters):
print(f"ML For: {len(qam)}-QAM: k = {k}, snr = {snr}")
total_squared_error = 0
# Squared error as defined on page 12 in chapter 1
squared_err = lambda true_phase_offset, theta_guess: min(
np.radians(true_phase_offset - theta_guess)**2,
np.radians(true_phase_offset - theta_guess + 90)**2,
np.radians(true_phase_offset - theta_guess - 90)**2,
)
for i in range(iters):
phase_offset, best_theta_guess, sent_stream, received_stream = ml_estimation(qam, snr, k)
total_squared_error += squared_err(phase_offset, best_theta_guess)
# Something's gone wrong
if (best_theta_guess < 0 or best_theta_guess > 90):
data = pd.DataFrame({"sent": np.insert(sent_stream, 0, 0), "received": np.insert(received_stream, 0, phase_offset + snr*1j)})
data.to_csv(f"logs/err_{len(qam)}QAM_iter{i}_infolog.csv")
print(f"Error for {len(qam)}-QAM: SNR = {snr}, K = {k}, True Offset = {phase_offset}, Best Estimate = {best_theta_guess}, Sq. Err = {squared_err(phase_offset, best_theta_guess)}")
print(f"Logged error to: logs/err_{len(qam)}QAM_iter{i}_infolog.csv")
if (i % 100 == 0):
print(f" iteration = {i}, phase_offset = {phase_offset}, best_guess = {best_theta_guess}")
print(f"Finished with mean squared error of {total_squared_error / iters}")
return total_squared_error / iters
# The following 4 functions all perform the same suite of tests for the ML
# estimator algorithm as explained in ch. 1 of the thesis on each of their
# respective QAM constellation sizes and logs the results to a csv file.
# input: None
# output: returns the dataframes that get logged as CSVs
### 32-QAM ###
def calculate_ml_results_32():
k_vals = np.arange(10,101,10)
qam = qam32_new()
err_data = []
snr_data = []
for k in k_vals:
snr_data.append(QAM32_SNR_LOW)
err_data.append(ml_estimation_performance_test(qam, QAM32_SNR_LOW, k, 1000))
for k in k_vals:
snr_data.append(QAM32_SNR_HIGH)
err_data.append(ml_estimation_performance_test(qam, QAM32_SNR_HIGH, k, 1000))
# Need to double length of k_vals
data32 = pd.DataFrame({"K": np.append(k_vals, k_vals), "SNR": snr_data, "ML Results": err_data})
data32.to_csv("data/qam32_ML_results.csv")
return data32
### 64-QAM ###
def calculate_ml_results_64():
k_vals = np.arange(10,101,10)
qam = qam64_new()
err_data = []
snr_data = []
for k in k_vals:
snr_data.append(QAM64_SNR_LOW)
err_data.append(ml_estimation_performance_test(qam, QAM64_SNR_LOW, k, 1000))
for k in k_vals:
snr_data.append(QAM64_SNR_HIGH)
err_data.append(ml_estimation_performance_test(qam, QAM64_SNR_HIGH, k, 1000))
# Need to double length of k_vals
data64 = pd.DataFrame({"K": np.append(k_vals, k_vals), "SNR": snr_data, "ML Results": err_data})
data64.to_csv("data/qam64_ML_results.csv")
return data64
### 128-QAM ###
def calculate_ml_results_128():
k_vals = np.arange(10,101,10)
qam = qam128_new()
err_data = []
snr_data = []
for k in k_vals:
snr_data.append(QAM128_SNR_LOW)
err_data.append(ml_estimation_performance_test(qam, QAM128_SNR_LOW, k, 1000))
for k in k_vals:
snr_data.append(QAM128_SNR_HIGH)
err_data.append(ml_estimation_performance_test(qam, QAM128_SNR_HIGH, k, 1000))
# Need to double length of k_vals
data128 = pd.DataFrame({"K": np.append(k_vals, k_vals), "SNR": snr_data, "ML Results": err_data})
data128.to_csv("data/qam128_ML_results.csv")
return data128
### 256-QAM ###
def calculate_ml_results_256():
k_vals = np.arange(10,101,10)
qam = qam256_new()
err_data = []
snr_data = []
for k in k_vals:
snr_data.append(QAM256_SNR_LOW)
err_data.append(ml_estimation_performance_test(qam, QAM256_SNR_LOW, k, 1000))
for k in k_vals:
snr_data.append(QAM256_SNR_HIGH)
err_data.append(ml_estimation_performance_test(qam, QAM256_SNR_HIGH, k, 1000))
# Need to double length of k_vals
data256 = pd.DataFrame({"K": np.append(k_vals, k_vals), "SNR": snr_data, "ML Results": err_data})
data256.to_csv("data/qam256_ML_results.csv")
return data256
# Calculates which level of energy is closest to that of the received symbol
# input: energies - The energy levels of the SML QAM
# received_symbol - Complex number representing the received symbol
# output: Returns the index of the np array in the QAM list that has the closest energy level
def get_closest_energy_level(energies, received_symbol):
return np.argmin((np.abs(received_symbol) - energies)**2)
# Calculates which energy levels will be used in the suboptimal log-likelihood calculation
# input: energies - The energy levels of the SML QAM
# received_symbol - Complex number representing the received symbol
# p - The number of surrounding energy levels to include
# output: Returns an array of the indices of the energy levels
def get_energy_levels(energies, received_symbol, p):
closest = get_closest_energy_level(energies, received_symbol)
return np.arange(max(closest - p, 0), min(closest + p + 1, np.size(energies)))
# Calculates the suboptimal log-likelihood function given a phase offset guess
# input: sml_qam - the QAM constellation being compared against (partitioned into energy levels)
# energies - an array of the energy levels for the sml_qam
# received_stream - the set of signals received as an np array
# snr - the signal to noise ratio used to calculate the received signals (in dB)
# theta_deg - the guess of the phase offset for the received data (in degrees)
# p - the number of surrounding energy levels to include in the calculation
# output: The value of the suboptimal log-likelihood function evaluated at theta
def get_sml_log_likelihood(sml_qam, energies, received_stream, snr, theta_deg, p):
linearized_snr = linearize_dB(snr)
vector_len = len(received_stream)
sml_ll_total = 0
for k in range(vector_len):
received_symbol = received_stream[k]
levels = get_energy_levels(energies, received_symbol, p)
sml_ll_total += np.log(np.sum(np.exp(-linearized_snr * np.abs(rotated(received_symbol, -theta_deg) - sml_qam[levels].flatten().compressed())**2)))
return sml_ll_total
# Calculates the suboptimal log-likelihood function given an array of phase offset guesses
# input: sml_qam - the QAM constellation being compared against (partitioned into energy levels)
# energies - an array of the energy levels for the sml_qam
# received_stream - the set of signals received as an np array
# snr - the signal to noise ratio used to calculate the received signals (in dB)
# theta_deg_arr - array of guesses to perform the calculation on (in degrees)
# p - the number of surrounding energy levels to include in the calculation
# output: an array of sml log-likelihoods for each theta in the given theta_deg_arr
def get_sml_log_likelihood_arr(sml_qam, energies, received_stream, snr, theta_deg_arr, p):
arr_len = len(theta_deg_arr)
sml_ll_vals = np.zeros(arr_len)
for i in range(arr_len):
sml_ll_vals[i] = get_sml_log_likelihood(sml_qam, energies, received_stream, snr, theta_deg_arr[i], p)
return sml_ll_vals
# Performs a first order Newton's method to the suboptimal log-likelihood function
# Performs the differentiation numerically by plugging in points with a delta
# input: sml_qam - the QAM constellation being compared against (partitioned into energy levels)
# energies - an array of the energy levels for the sml_qam
# received_stream - the set of signals received as an np array
# snr - the signal to noise ratio used to calculate the received signals (in dB)
# theta_guess - the guess of the phase offset for the received data (in degrees)
# p - the number of surrounding energy levels to include in the calculation
# output: The new estimation for the value of theta
def newtons_method_sml(sml_qam, energies, received_stream, snr, theta_guess, p):
delta = 1e-3
y = lambda theta: get_sml_log_likelihood(sml_qam, energies, received_stream, snr, theta, p)
y1 = y(theta_guess)
y2 = y(theta_guess + delta)
y3 = y(theta_guess + 2*delta)
t = -delta * ( (y2 - y1) / (y1 - 2*y2 + y3) )
return theta_guess + t # new guess from 1st order Newton's method
# Performs a second order Newton's method to the SML log-likelihood function
# (first order Newton's method applied 2x)
# input: sml_qam - the QAM constellation being compared against (partitioned into energy levels)
# energies - an array of the energy levels for the sml_qam
# received_stream - the set of signals received as an np array
# snr - the signal to noise ratio used to calculate the received signals (in dB)
# theta_guess - the guess of the phase offset for the received data (in degrees)
# p - the number of surrounding energy levels to include in the calculation
# output: The new estimation for the value of theta
def second_order_newtons_method_sml(sml_qam, energies, received_stream, snr, theta_guess, p):
theta_guess = newtons_method_sml(sml_qam, energies, received_stream, snr, theta_guess, p) # 1st order
theta_guess = newtons_method_sml(sml_qam, energies, received_stream, snr, theta_guess, p) # 2nd order
if (theta_guess < 0):
theta_guess += 90
elif (theta_guess > 90):
theta_guess -= 90
return theta_guess
# Chooses a random phase offset and uses input to generate data and perform SML estimation to estimate the chose phase offset
# input: sml_qam - the QAM constellation being compared against (partitioned into energy levels)
# energies - an array of the energy levels for the sml_qam
# snr - signal to noise ratio used to generate noise in dB
# k - vector length
# p - the number of surrounding energy levels to include in the calculation
# output: A tuple containing the true chosen phase offset, the estimatied phase offset, and the sent and received streams
def sml_estimation(sml_qam, energies, snr, k, p):
theta_guesses = np.arange(0,91,2)
phase_offset = np.random.uniform(0,90) # Choose random value for theta from [0, 90)
sent_stream = np.random.choice(sml_qam.flatten().compressed(), k)
received_stream = get_received_stream(sent_stream, phase_offset, snr)
log_likelihood_vals = get_sml_log_likelihood_arr(sml_qam, energies, received_stream, snr, theta_guesses, p)
# Best estimate of theta based on inital 2 degree incremental evaluations of log-likelihood
best_theta_guess = theta_guesses[np.argmax(log_likelihood_vals)]
# Fine optimization using 2nd order Newton's method
best_theta_guess = second_order_newtons_method_sml(sml_qam, energies, received_stream, snr, best_theta_guess, p)
return (phase_offset, best_theta_guess, sent_stream, received_stream)
# Measures the average performence of the Suboptimal Maximum Likelihood estimation algorithm over a series of iterations
# input: sml_qam - the QAM constellation being compared against (partitioned into energy levels)
# energies - an array of the energy levels for the sml_qam
# snr - signal to noise ratio used to generate noise in dB
# k - vector length
# p - the number of surrounding energy levels to include in the calculation
# iters - how many tests to perform (1000 in paper)
# output: The mean squared error for all of the iterations tested
def sml_estimation_performance_test(sml_qam, energies, snr, k, p, iters):
qam_size = len(sml_qam.flatten().compressed())
print(f"SML For: {qam_size}-QAM: k = {k}, snr = {snr}")
total_squared_error = 0
# Squared error as defined on page 12 in chapter 1
squared_err = lambda true_phase_offset, theta_guess: min(
np.radians(true_phase_offset - theta_guess)**2,
np.radians(true_phase_offset - theta_guess + 90)**2,
np.radians(true_phase_offset - theta_guess - 90)**2,
)
for i in range(iters):
phase_offset, best_theta_guess, sent_stream, received_stream = sml_estimation(sml_qam, energies, snr, k, p)
total_squared_error += squared_err(phase_offset, best_theta_guess)
# Something's gone wrong
if (best_theta_guess < 0 or best_theta_guess > 90):
data = pd.DataFrame({"sent": np.insert(sent_stream, 0, 0), "received": np.insert(received_stream, 0, phase_offset + snr*1j)})
data.to_csv(f"logs/err_{qam_size}QAM_iter{i}_infolog.csv")
print(f"Error for {qam_size}-QAM: SNR = {snr}, K = {k}, True Offset = {phase_offset}, Best Estimate = {best_theta_guess}, Sq. Err = {squared_err(phase_offset, best_theta_guess)}")
print(f"Logged error to: logs/err_{qam_size}QAM_iter{i}_infolog.csv")
if (i % 100 == 0):
print(f" iteration = {i}, phase_offset = {phase_offset}, best_guess = {best_theta_guess}")
print(f"Finished with mean squared error of {total_squared_error / iters}")
return total_squared_error / iters
# The following 4 functions all perform the same suite of tests for the SML
# estimator algorithm as explained in ch. 1 of the thesis on each of their
# respective QAM constellation sizes and logs the results to a csv file.
# input: p - the number of surrounding energy levels to include in the calculation of the suboptimal log-likelihood function
# output: returns the dataframes that get logged as CSVs
### 32-QAM ###
def calculate_sml_results_32(p):
k_vals = np.arange(10,101,10)
sml_qam, energies = sml_qam32_new()
err_data = []
snr_data = []
for k in k_vals:
snr_data.append(QAM32_SNR_LOW)
err_data.append(sml_estimation_performance_test(sml_qam, energies, QAM32_SNR_LOW, k, p, 1500))
for k in k_vals:
snr_data.append(QAM32_SNR_HIGH)
err_data.append(sml_estimation_performance_test(sml_qam, energies, QAM32_SNR_HIGH, k, p, 1500))
# Need to double length of k_vals
data32 = pd.DataFrame({"K": np.append(k_vals, k_vals), "SNR": snr_data, "SML Results": err_data})
data32.to_csv(f"data/qam32_SML_results_{p}p.csv")
return data32
def calculate_sample_data():
PHASE_VALS = [15.74324, 25.0, 45.0, 65.3546372, 75.0]
SAMPLE_LEN = 1000
def log_data(qam, snr_lo, snr_hi):
sent_stream = np.insert(np.random.choice(qam, SAMPLE_LEN), 0, 0)
df = pd.DataFrame({
"Sent": sent_stream,
})
for index, val in enumerate(PHASE_VALS):
received_stream_lo = np.insert(get_received_stream(sent_stream[1:], val, snr_lo), 0, val + snr_lo*1j)
received_stream_hi = np.insert(get_received_stream(sent_stream[1:], val, snr_hi), 0, val + snr_hi*1j)
df[f"Received {index+1} Low"] = received_stream_lo
df[f"Received {index+1} High"] = received_stream_hi
df.to_csv(f"data/qam{len(qam)}_samples.csv")
print(f'Logged new samples to "data/qam{len(qam)}_samples.csv"')
log_data(qam32_new(), QAM32_SNR_LOW, QAM32_SNR_HIGH)
log_data(qam64_new(), QAM64_SNR_LOW, QAM64_SNR_HIGH)
log_data(qam128_new(), QAM128_SNR_LOW, QAM128_SNR_HIGH)
log_data(qam256_new(), QAM256_SNR_LOW, QAM256_SNR_HIGH)
def main():
qam = qam256_new()
df = pd.DataFrame({"Symbols": qam})
df.to_csv("qam256.csv")
if __name__ == "__main__":
main()