ELASTICSEARCH-AIS
demo:https://github.com/lihang212010/Elasticsearch-ais-demo
javadoc:http://49.232.76.209:8080/download/apidocs/
maven:pom.xml
<dependency>
<groupId>com.github.lihang212010</groupId>
<artifactId>ais</artifactId>
<version>1.0.1</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>7.3.1</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.58</version>
<optional>true</optional>
</dependency>
Why use AIS
Simpler code operation close to kibana
estemplate.term("worker","farmer"); //This is the result of querying the worker property as farmer
Auto map results
@RequestMapping("terms")
public List<User> terms() throws IOException {
estemplate.terms("age",25,35,10,68);
return estemplate.execute(index,User.class);
}
Code in kibana can be copied directly
@RequestMapping("/findCustom")
public List<User> findCustom(User user) throws IllegalAccessException, NoSuchFieldException, IOException {
String script="GET demo/_search\n" +
"{\n" +
" \"query\": {\n" +
" \"bool\": {\n" +
" \"must\": [\n" +
" {\n" +
" \"wildcard\": {\n" +
" \"name\": {\n" +
" \"value\": \"#{name}\"\n" +
" }\n" +
" }\n" +
" },\n" +
" {\n" +
" \"term\": {\n" +
" \"id\": {\n" +
" \"value\": \"#{id}\"\n" +
" }\n" +
" }\n" +
" }\n" +
" ],\n" +
" \"must_not\": [\n" +
" {\n" +
" \"range\": {\n" +
" \"age\": {\n" +
" \"gte\": #{age}\n" +
" }\n" +
" }\n" +
" }\n" +
" ]\n" +
" }\n" +
" },\n" +
" \"from\": \"#{pageFrom}\",\n" +
" \"size\": \"#{pageSize}\"\n" +
"}";
return estemplateCustom.excute(script,user);
}
JSON and Java code can be used to handle complex requirements
@Elasticsearch
public interface UserJson {
List<User> findName(String name);
List<User> findIdName(String name,String id);
}
{
"findName": {
"requestMethod": "GET",
"index": "demo/_search",
"script": {
"query": {
"wildcard": {
"name": {
"value": "#{name}"
}
}
}
}
},
"findIdName": {
"requestMethod": "GET",
"index": "demo/_search",
"script": {
"query": {
"bool": {
"must": [
{
"wildcard": {
"name": {
"value": "#{name}"
}
}
},
{
"term": {
"id": {
"value": "#{id}"
}
}
}
]
}
}
}
}
}
TO CONFIGURE elasticsearch.ais.url=127.0.0.1:9200 Clusters are separated by commas
elasticsearch.ais.aisResource=com.ais @The interface location of the elasticsearch annotation. If it is not configured, all paths will be scanned, resulting in slow start of springboot. It is recommended to configure it as the project path
elasticsearch.ais.userName="" userName
elasticsearch.ais.passWard="" passWard
elasticsearch.ais.socketTimeout=30000 Socket connection timeout
elasticsearch.ais.connectTimeout=10000 connection timeout
elasticsearch.ais.scheme="http" Request mode
elasticsearch.ais.header="" Request header
elasticsearch.ais.value="" Request header corresponding value
elasticsearch.ais.jsonPath=static JSON file path
ESTEPLATE,SIMPLEST OPERATION Esteplate is the simplest and most commonly used way to operate elastic search in AIS. It allows you to easily implement the required functions in just a few lines of code.
When we use it, we only need to use the injection in spring to make it easy to use it
@Autowired
Estemplate estemplate;
I'll write a few simple use examples below, which just show the simplicity of AIS operation.
insert
@Autowired
Estemplate estemplate;
@RequestMapping("/insert1")
public void insert1(List<User> list,String index) throws IOException {
estemplate.insert(list,index);
}
User is an entity class. In fact, our operation is only estemplate.insert (list, index); in such a row, index is the index position corresponding to the insertion, and list is an entity class list. AIs will automatically exclude the null value in the list, so we do not need to judge the null value. Of course, in addition to these AIS, it also supports the insertion of map objects and single entity classes.
delete"
@Autowired
Estemplate estemplate;
@RequestMapping("/delete")
public void delete(String index,String id) throws IOException {
estemplate.delete(index,id);
}
Index is the corresponding index to be deleted, and ID is the ID to be deleted
query
Query is the most important and commonly used function in elastic search AIS simplifies the query operations that meet the requirements of normal work. For the operations that are too complex, elastic search also provides a way similar to mybatis.
@Autowired
Estemplate estemplate;
public List<User> find() throws IOException {
estemplate.wildcard("name","li");
estemplate.term("worker","farmer");
estemplate.rangelte("age",18);
return estemplate.execute("/demo/user",User.class);
}
For example, we need to query the objects whose name attribute contains Li, worker attribute equals farmer, and age is less than or equal to 18. Only three lines of query and one line of execution are needed.
INSERT AIS supports three ways of inserting, batch inserting and single data inserting. Its corresponding API is only one line estemplate.insert(list,index); List is the data to be inserted. It supports three methods: list, map, and single entity class. Index is the corresponding index (type is discarded in elastic search 7)
If we need to insert a piece of data, user is the corresponding entity class
@Autowired
Estemplate estemplate;
public void insert3(String index,User user) throws IOException {
estemplate.insert(user,index);
}
For cases where a set of data needs to be inserted
public void insert1(List<User> list,String index) throws IOException {
estemplate.insert(list,index);
}
When you need to insert a set of data and customize the corresponding ID of each data
public void insert2(Map<Object,User> map,String index) throws IOException {
estemplate.insert(map,index);
}
The key in the map is the ID you need to set, and the value is the corresponding data
FIND Query is the most important operation in elastic search. The query encapsulated by esteplate is very similar to the query operation in elastic search. If you are skilled in using kibana, you can use AIS query without difficulty. Of course, if you have not operated kibana, you can also quickly start AIS query.
QUERY RULES By default, all queries in esteplate are query queries, but filtering queries are also supported. Here's a brief introduction to two kinds of queries in elastic search, filter queries and score queries. Score queries rank query results, but the performance is slightly inferior to filter queries, so we can filter queries for options that do not require query results Esteplate divides queries into four categories
Queries that must be satisfied by must
Must not
Filter query that must be satisfied by filter
Filter ABCD must not
The default query of esteplate is most query, but the query method of this query can be modified in the first parameter Such as: Estemplate.term ("worker", "farmer"); / / this is the result of querying the worker property as farmer
Estemplate.term ("must not", "worker", "farmer"); / / this is the result of querying that the worker property is not farmer
Estemplate.term ("filter_most", "worker", "farmer"); / / this is the result of querying that the worker property is farmer by filtering
Estemplate.term ("filter ﹐ most ﹐ not", "worker", "farmer"); / / this is the result of querying that the worker property is not farmer by filtering
Esteplate will skip null value by default
such as
estemplate.wildcard("name","li");
estemplate.term("worker","");
estemplate.rangelte("age",18);
If worker is null, only name and age will be queried in this query
API If you have manipulated kibana, these APIs will be very attribute. Their names are the same as those in elasticsearch. If you don't understand them, this article will provide some simple use scenarios. For the specific content of each query, it is more recommended that the official document of elasticsearch be provided . . . Query common parameters
type, The default query method is "must". You can select "must not", filter "must", filter "must not"
key, Corresponding field. The corresponding property of the query is named in elasticsearch
value, Corresponding value to query
index Corresponding index
boost Ranking score proportion, default is 1
Specific API
Query related API
term Accurate query, required parameters: key, value optional parameters type, boost
wildcard Left and right fuzzy query, required parameters: key, value optional parameters: type, boost
match Word segmentation query, required parameters key, value optional parameters type, boost
wildcardLeft Left fuzzy query, required parameters: key, value optional parameters: type, boost
wildcardRight Right fuzzy query, required parameters: key, valueoptional parameters: type, boost
wildcardFree Custom fuzzy query, required parameters: key, valueoptional parameters: Boost
terms It contains the query and the required parameters key and value. The value here can be an array and a number. The optional parameters are: type
match_phrase Phrase matching, required parameters key, value, optional parameters: slop: the number of words allowed to be separated between words; type
match_phrase_prefix Phrase prefix matching, required parameters key, value, optional parameters: slop: the number of words allowed to be separated between words, max_expansions: specify the maximum number of results for prefix matching; type
common High frequency query, improve the query result by excluding common words in the article, without affecting the performance. Necessary parameters: key, value, cutoff_frequency: exclude the words with frequency in the article, optional parameter: type
exits Determine whether an attribute exists. The required parameter is key. The optional parameter is type
fuzzy For error correction query, how many errors can be allowed in the input parameters? Required parameters: key, value, optional parameters: fuzzy: how many errors can be allowed, prefix_length: exact query length, type
geo_shape For geographic location query, the required parameters are: key, coordinates: geographic location coordinate, usually a multidimensional array, relation: query method
ids The required parameter values for ID query can be an ID or an array of IDS. Optional parameter: type
multi_match Multi field word segmentation query, required parameter value, value to be searched, keys, corresponding field array, optional parameter: type
more_like_this It must contain word query. It is required that the content of a certain (one or more) field must contain a certain participle. The required parameters are: Value: the participle that must be included, keys: the field, which can be one or more. Min_term_freq: the minimum number of participles, Max? Query? Terms: maximum number, optional parameter: type
percolate Index attribute query: query the index attribute of a field. Required fields: key, value, field: the field of the type of index query, optional parameter, type
prefix Left fuzzy (recommended), required fields, key, value, optional parameters: boost, type
query_string A more strict string query (you can perform and or non equal operations, but if the query contains invalid content, the query fails). Required fields: default ﹣ field: corresponding field, query ﹣ query content, optional parameters: type
range Range query, required parameters: key, GTE: value greater than or equal to, LTE is less than or equal to, optional parameters: type
rangegte Greater than or equal to range
rangelte Less than or equal to
regexp Regular query, required parameters: key, value, optional parameters: Max ﹣ determined ﹣ states: maximum number required for query, default 10000, flags: optional operator, type
script Script, you can freely embed the statements you want to make. Required parameters: Source: implanted script, optional parameters, Lang, params, type
simple_query_string Use simpler symbolic operation to query (such as + - |), and the query is more strict. The required parameters are: value, file: one or more fields, and the optional parameters are: type
wripper To accept queries of other queries, the required parameters are: query: Base64 encoding of other queries, and the optional parameters are: type
findFree Insert elasticsearch native statement, default parameter: query: inserted statement, optional parameter: type
should You can perform operations like or, or you can add points. Minimum? Should? Match: how many items should be met at least
. . . API related to processing results (these operations are relatively simple and do not depend on display, which will be shown in several common query examples)
source Field filter can display several fields in the result, parameter: fields: one or more fields
version Show version number or not
timeout
stored_fields Another less recommended field filter
stats Result statistics
sort Sort. If you need to sort multiple values, write the fields to be sorted in odd digits and the sorting rules in even digits
size Maximum number of pages
from (Page) starting from page
script_fields Script
profile Whether to view the specific aggregate search process and specific time consumption
partial_fields More powerful and recommended field filtering
indices_boost Correlation control
highlight Highlight, optional field pre tab: add content before highlighted field, post tab: add content after highlighted field
explain Open to view how to score
collapse Field folding
docvalue_fields Another query, which saves space but forbids the use of sort, aggregate, access the field from script, etc
Query results: (the following three query methods are uniform and asynchronous, with similar usage)
excute Get all query results and map them to entity class, parameter: index: index name, Tclass: required return value type, requestmethod: request method
excuteOne Execute all queries, parameters: index: index name, Tclass: required return value type, requestmethod: request method, Tclass: required return value type
excuteJson Execute all queries and return the original results. Parameters: index: index name, requestmethod: request method
If you have any questions about these queries, we will show them in a few simple examples
WILDCARD Wildcard is a fuzzy query, if we have such a set of data
We can do this in AIS estemplate.wildcard("name","范"); In this way, you can query the contents with "范" in all names
The query in kibana is like this
GET demo/_search
{
"query": {
"wildcard": {
"name": {
"value": "*范*"
}
}
}
}
estemplate.wildcardLeft("name","范");
This is to query all the contents beginning with "范" in name
estemplate.wildcardRight("name","范");
This is to query the contents at the end of all "范" in name
estemplate.wildcardFree("name","范");
With wildcardfree, you need to insert a matching symbol * or * to match multiple characters, and. To match one
TERM
Term is accurate search
In some versions of elasticsearch, the keyword must be added to the field attribute if it is included in the field attribute. If there is no keyword attribute, it doesn't matter
estemplate.term("name.keyword","奚范"); Query the familiarity of "奚范" in name
kibana
GET demo/_search
{
"query": {
"term": {
"name.keyword": {
"value": "奚范"
}
}
}
}
MATCH match是分词查询,什么是分词查询 比如:我们是朋友 它是由我们,朋友,是3个词组成的 在elasticsearch使用match查询这3个词中的任意一个都应该得到我们是朋友结果。 同样我们的查询内容也会被分词,然后去和文章内容的分词比较
match查询是elasticsearch中的核心查询,对于中文查询来说比较著名的是IK分词器 在ais中 estemplate.match("name","奚范");
在kibana中
GET demo/_search
{
"query": {
"match": {
"name": {
"query": "奚范"
}
}
}
}
TERMS terms又叫包含查询 例如 estemplate.terms("age",25,35,10,68); 它可以查询age属性为23,35,10,68的所有数据,也可以查询age是一个数组,数组中有这几个数字中的数据 比如在程序中执行后这是我得到的一些结果
在kibana中的terms
GET demo/_search
{
"query": {
"terms": {
"age": [10,25,35,68]
}
}
}
MATCH_PHRASE match_phrase是短语查询
estemplate.match_phrase("title","We friends",2);
2是允许词与词之间最大相隔几个单词
在文中title的内容为We are good friends,而我们查询的内容是We friends,中间少一个good,但是我们允许词与词之间可以有2个相隔单词,所以可以查询到对应内容
kibana中语句
GET demo/_search
{
"query": {
"match_phrase": {
"title": {
"query": "We friends",
"slop": 2
}
}
}
}
MATCH_PHRASE_PREFIX match_phrase_prefix 比起match_phrase多了个前缀查询
还是这组数据 estemplate.match_phrase_prefix("title","We good f",2); 这句话的意思是查询语句中We are good然后下一个单词的首字母为f开头的数据,可以允许最多空2个词
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"match_phrase_prefix": {
"title": {
"query": "We good f",
"max_expansions": 10,
"slop":2
}
}
}
]
}
}
}
COMMON common主要作用是排除查询选项中一些常用词比如英语中的is,are,汉语中的是,我,他之类 参数:cutoff_frequency:出现的频率 使用方式 estemplate.common("title","We are",0.01);
kibana中
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"match_phrase_prefix": {
"title": {
"query": "We good f",
"max_expansions": 10,
"slop":2
}
}
}
]
}
}
}
EXITS extis 判断某一属性是否存在
estemplate.exits("title");
kibana中使用方式
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"common": {
"title": {
"query": "We are",
"cutoff_frequency": 0.01
}
}
}
]
}
}
}
FUZZY fuzzy是一种允许错误的term查询 参数:fuzziness:允许多少错误
estemplate.fuzzy("name","李松",1); 因为允许一个出差所以可以查询李张,和张松这些数据
kibana中的
GET demo/_search
{
"query": {
"fuzzy": {
"name": {
"value": "孙a",
"fuzziness": 1
}
}
}
}
IDS 查询某一个id,注意Elasticsearch一般是独立与存储数据的,所以一般会设置id等于数据中的某一字段 使用方式 estemplate.ids("09EprnABqEAuwq_e8YJH","19EprnABqEAuwq_e8YJH"); 查询这2个id的对应数据
或者 estemplate.ids("09EprnABqEAuwq_e8YJH"); 查询此id对应数据
kibana中
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"ids": {
"values": [
"09EprnABqEAuwq_e8YJH",
"19EprnABqEAuwq_e8YJH"
]
}
}
]
}
}
}
MULTI_MATCH multi_match 多字段分词查询 . estemplate.multi_match("are","name","title"); 查询在name和title字段中含有are单词的数据 . kibana中代码
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"multi_match": {
"query": "are",
"fields": [
"name",
"title"
]
}
}
]
}
}
}
MORE_LIKE_THIS more_like_this 必须包含词查询,要求某(一个或多个)字段内容必须包含某一分词,必备参数:value:必须包含的分词,keys:字段,可以是一个或多个,min_term_freq:最小包含数目,max_query_terms:最多包含数目,可选参数:type . estemplate.more_like_this(1,10,"are","title"); 作用:查询出字段title中含有1-10个are的数据 . kibana中代码
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"more_like_this": {
"fields": [
"title"
],
"like": "are",
"min_term_freq": 1,
"max_query_terms": 10
}
}
]
}
}
}
PREFIX 左模糊查询 estemplate.prefix("name","李"); 查询所有姓“李”的 . kibana中代码
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"prefix": {
"name": {
"value": "李"
}
}
}
]
}
}
}
QUERY_STRING query_string 较为严格的字符串查询(可以进行和或非等操作,但如果查询中包含无效内容,则查询失败),必备字段:default_field:对应字段,query_:查询内容,可选参数:type
estemplate.query_string("name","(孙李) OR (李周)"); 查询name为孙李或者李周的人 . kibana中
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"query_string": {
"default_field": "name",
"query": "(孙李)OR(李周)"
}
}
]
}
}
}
RANGE range 范围查询,必备参数:key,gte:大于等于的数值,lte小于等于的数值,可选参数:type . estemplate.range("age",10,100); 查询age在10和100之间的数据 .
estemplate.rangelte("age",100); 查询age小于100的数据 estemplate.rangegte("age",10); 查询age大于10的数据 . kibana中语句
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"range": {
"age": {
"gte": 10,
"lte": 100
}
}
}
]
}
}
}
REGEXP regexp 正则查询,必备参数:key,value,可选参数:max_determinized_states:查询所需最大数目,默认10000,flags:可选运算符,type . estemplate.regexp("name","孙.?"); 查询孙开头的字 当然正则表达式的写法很多,几乎可以满足所有需求,大家可以自行百度 . kibana中代码
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"regexp": {
"name": {
"value": "孙.?"
}
}
}
]
}
}
}
SCRIPT script 脚本,可以自由植入自己想进行的语句,必备参数:source:植入的脚本,可选参数,lang,params,type script是高级elasticsearch程序员的必备技能,它使用了另一种语言,本文将不在具体解释,只提供一个简单例子 . estemplate.script("doc['age']>10"); 查询age大于10的数据 . kibana中代码
GET demo/_search
{
"query": {
"bool": {
"must": [
{
"regexp": {
"name": {
"value": "孙.?"
}
}
}
]
}
}
}
FINDFREE findFree 插入Elasticsearch原生的语句,默认参数:query:插入的语句,可选参数:type
对于api中没有的查询方式或者更为麻烦的查询方式或者想自己拼写代码的人可以使用
String query="{\n" +
" \"term\": {\n" +
" \"name.keyword\": {\n" +
" \"value\": \"奚范\"\n}" +
" }\n" +
" }";
estemplate.findFree(query);
SHOULD should是或操作,在ais中使用着稍显复杂 estemplate.should(1,Find.term("name","张三"),Find.term("name","liu")); 这个是在后面的2个精确情况下必须满足其中其中一个 Find是一个静态类,他的使用方式和Esteplate相似
COMMON QUERY EXAMPLES
@RestController
public class Finds {
@Autowired
Estemplate estemplate;
private String index="demo";
/*
* This query indicates that the age is between 10 and 48, but not between 22-24. The initial of the name is Li. The title contains are. The worker is the teacher or the doctor from 0 to 20
* */
@RequestMapping("find1")
public List<User> find1() throws IOException {
estemplate.range("age",10,48);
estemplate.range("must_not","age",22,24);
estemplate.prefix("name","李");
estemplate.wildcard("title","are");
estemplate.terms("worker","Teacher","Doctor");
estemplate.from(0);
estemplate.size(20);
return estemplate.execute(index,User.class);
}
/*
* The name is Zhang San or Liu's age is greater than 20
* */
@RequestMapping("find2")
public List<User> find2() throws IOException {
estemplate.script("doc['age']>20");
estemplate.should(1,Find.term("name","张三"),Find.term("name","liu"));
estemplate.from(0);
estemplate.size(20);
return estemplate.execute(index,User.class);
}
}
COMMON QUERY EXAMPLES -MVC
@RestController
public class FindController {
@Autowired
Estemplate estemplate;
private String index="demo";
/*
*User is an entity class, and null values are excluded by default in AIS. Therefore, null values do not need to be detected
* */
@RequestMapping("find")
public List<User> find(User user) throws IOException {
estemplate.prefix("name",user.getName());
estemplate.wildcard("title",user.getTitle());
estemplate.term("age",user.getAge());
estemplate.wildcard("data",user.getDate());
estemplate.from(0);
estemplate.size(20);
return estemplate.execute(index,User.class);
}
}
UPDATE There are three types of modification: one is to modify a single attribute The key in the map is the field you want to modify, and the value is the value you want to modify
public void update(String id, Map<String,Object> map,String index) throws IOException {
estemplate.update(id,map,index);
}
This is batch modification. The key of the first map is ID, the key of the map is the field you want to modify, and the value is the value you want to modify
public void update1(Map<String,Map<String,Object>> map,String index) throws IOException {
estemplate.update(map,index);
}
Another is to modify the query rules For example, the following is to change the title of all the names containing Li to***
@RequestMapping("/update_by_query")
public void update_by_query() throws IOException {
estemplate.wildcard("name","李");
Map<String,String> map=new HashMap();
map.put("title","We are good friends. Our friendship will last forever");
estemplate.update_by_query(map,index);
}
DELETE There are two ways to delete AIS One is to delete based on ID, which can be based on one or more IDS
public void delete(String index,String id) throws IOException {
estemplate.delete(index,id);
}
public void delete(String index,String ...id) throws IOException {
estemplate.delete(index,id);
}
The other is to delete with the help of query rules. For example, the following example is to delete all ages equal to 10 years old
public void delete_query() throws IOException {
estemplate.term("age","10");
estemplate.delete_by_query("demo");
}
POJOTEMPLATE-ADD, DELETE AND MODIFY TEMPLATE CLASS Pojotemplate is a template for defining rules for entity classes. When using it, we only need to inherit the abstract class pojotemplate and define corresponding query rules
For example:
@Repository
public class UserTemplate extends POJOTemplate<User> {
/*
* catalog index
* */
@Override
public void setIndex() {
this.index="demo";
}
/*
* Set properties such as paging
* */
@Override
public void setConfig(User entity) {
estemplate.from(entity.getPageFrom());
estemplate.size(entity.getPageSize());
}
/*
* Settings can be queried by ID and name
* */
@Override
public void findRule(User user) {
estemplate.term("id",user.getId());
estemplate.wildcard("name.keyword",user.getName());
}
}
First, we need to define the corresponding index name, then define some of its setting rules (such as page highlighting, etc.) and query rules. Then we can query, modify, delete and other operations according to the corresponding ID or name (query rules are used for deletion and modification by default)
@RestController
public class FindController {
@Resource
UserTemplate userTemplate;
@RequestMapping("findUser")
public List<User> findUser(User user) throws IOException {
return userTemplate.find(user);
}
@RequestMapping("updateUser")
public String updateUser(User user) throws IOException {
try {
Map<String,String> map=new HashMap<>();
map.put("name","走姊姊");
return userTemplate.update(user,map).toString();
}catch (Exception e){
return e.toString();
}
}
@RequestMapping("insertUser")
public String insertUser(User user){
try {
return userTemplate.insert(user).toString();
} catch (Exception e) {
return "error" + e;
}
}
@RequestMapping("deleteUser")
public String deleteUser(User user){
try {
return userTemplate.delete(user).toString();
}catch (Exception e){
return e.toString();
}
}
}
SOME RULES USED BY TEMPLATES POJO is a very easy way to operate elasticsearch. Using it, we can even write a query rule for every attribute in the entity class, and simplify the query, modification, deletion, addition and other operations into a class.
But pay attention when using it
By default, the rules used for deletion, query and modification are query rules. The reason why they can be used together is that esteplate will automatically skip the query of null value. Therefore, if you need to use the custom query findfree, please do a good job in null value processing.
In addition, if you don't want to use the same rule for your own deletion, modification and query, you can define corresponding rules for none of them
Such as:
@Repository
public class UserTemplate extends POJOTemplate<User> {
@Override
public void setIndex() {
this.index="demo";
}
@Override
public void setConfig(User entity) {
estemplate.from(entity.getPageFrom());
estemplate.size(entity.getPageSize());
}
/*
* Settings can be queried by ID and name
* */
@Override
public void findRule(User user) {
estemplate.term("id",user.getId());
estemplate.wildcard("name.keyword",user.getName());
}
/*
* The set can only be deleted with ID
* */
@Override
public void deleteRule(User user){
estemplate.term("id",user.getId());
}
/*
*The settings can only be modified by name
* */
@Override
public void updateRule(User user){
estemplate.term("name",user.getId());
}
}
@ELASTICSEARCH-THE MOST FREE QUERY @Elasticsearch is a query method similar to mybatis, but the corresponding is to modify XML query file to JSON file, because the query method of elasticsearch is based on JSON First of all, let's talk about the rules of JSON. The file name of JSON must be the same as the file name of the interface. Then, the first level of JSON is the corresponding method. In the second quarter, there are three attributes: index corresponding to the index location, requestmethod request method, script corresponding to the script. For the attributes to be replaced, use {} to mark (numbers also use quotation marks in AIS, and {} is not the JSON format), Then we can use @ elasticsearch to return only three results, jsonobject, string, list < entity > format. For normal search, we can use the list format, and other operations depend on the situation.
In addition, when @ Autowired is used, AIS injects the lowercase initial of the interface name into the bean by default,
For example, the interface name is find be
@Autowired Find find; Here are a few examples
@Elasticsearch
public interface UserJson {
List<User> findName(String name);
List<User> findIdName(String name,String id);
}
{
"findName": {
"requestMethod": "GET",
"index": "demo/_search",
"script": {
"query": {
"wildcard": {
"name": {
"value": "#{name}"
}
}
}
}
},
"findIdName": {
"requestMethod": "GET",
"index": "demo/_search",
"script": {
"query": {
"bool": {
"must": [
{
"wildcard": {
"name": {
"value": "#{name}"
}
}
},
{
"term": {
"id": {
"value": "#{id}"
}
}
}
]
}
}
}
}
}
@Elasticsearch
public interface UserSenior {
List<User> findSenior(User user);
List<User> findSeniorTest(User user);
}
{
"findSenior": {
"requestMethod": "GET",
"index": "demo/_search",
"script": {
"query": {
"bool": {
"must": [
{
"wildcard": {
"name": {
"value": "#{name}"
}
}
},
{
"term": {
"id": {
"value": "#{id}"
}
}
}
],
"must_not": [
{
"range": {
"age": {
"gte": "#{age}"
}
}
}
]
}
}
}
},
"findSeniorTest": {
"requestMethod": "GET",
"index": "demo/_search",
"script": {
"query": {
"bool": {
"must": [
{
"wildcard": {
"name": {
"value": "#{name}"
}
}
},
{
"term": {
"id": {
"value": "#{id}"
}
}
}
],
"must_not": [
{
"range": {
"age": {
"gte": "#{age}"
}
}
}
]
}
},
"from": "#{pageFrom}",
"size": "#{pageSize}"
}
}
}
@RestController
public class FindJson {
@Autowired
UserJson userJson;
@Autowired
UserSenior userSenior;
@RequestMapping("/findName")
public List<User> findName(String name){
return userJson.findName(name);
}
@RequestMapping("/findIdName")
public List<User> findIdName(String name,String id){
return userJson.findIdName(name,id);
}
@RequestMapping("/findSenior")
public List<User> findSenior(User user){
return userSenior.findSenior(user);
}
@RequestMapping("/findSeniorTest")
public List<User> findSeniorTest(User user){
return userSenior.findSeniorTest(user);
}
}
ESTEMPLATECUSTOM, MORE INTEGRATED WITH KIBANA @Elasticsearch can satisfy all your operations, but when your operation content is too simple, you can choose esteplatecuston, which is the Java code format of @ elasticsearch You may find that we are copying the code of kibana and replacing the corresponding field value with {} In addition, of course, there is not only one method in esteplatecuston, it can also simply perform, and some asynchronous operations and other functions (asynchronous is not perfect but can be used)
Parameters in its method:
Index: index
Requestmethod: request method
Tclass: entity class
Entity: corresponding entity class
URL: request path
@RestController
public class FindCustom {
@Autowired
EstemplateCustom estemplateCustom;
@RequestMapping("/findCustom")
public List<User> findCustom(User user) throws IllegalAccessException, NoSuchFieldException, IOException {
String script="GET demo/_search\n" +
"{\n" +
" \"query\": {\n" +
" \"bool\": {\n" +
" \"must\": [\n" +
" {\n" +
" \"wildcard\": {\n" +
" \"name\": {\n" +
" \"value\": \"#{name}\"\n" +
" }\n" +
" }\n" +
" },\n" +
" {\n" +
" \"term\": {\n" +
" \"id\": {\n" +
" \"value\": \"#{id}\"\n" +
" }\n" +
" }\n" +
" }\n" +
" ],\n" +
" \"must_not\": [\n" +
" {\n" +
" \"range\": {\n" +
" \"age\": {\n" +
" \"gte\": #{age}\n" +
" }\n" +
" }\n" +
" }\n" +
" ]\n" +
" }\n" +
" },\n" +
" \"from\": \"#{pageFrom}\",\n" +
" \"size\": \"#{pageSize}\"\n" +
"}";
return estemplateCustom.excute(script,user);
}
}
@ELASTICSEARCHASYNC ”@Elasticsearchasync "is the asynchronous operation of @ elasticserach". They use the same way, but the operation of @ elasticsearchasync is not very stable and perfect. I will improve the corresponding functions in time.