-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper_torch.py
136 lines (120 loc) · 6.05 KB
/
helper_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from typing import Optional, Tuple, List
import ctranslate2
import torch
import copy
from transformers import StoppingCriteria
from transformers import StoppingCriteriaList
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], tokenizer=None, encounters=1):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
self.tokenizer = tokenizer
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
if "\n\n" in self.tokenizer.decode([input_ids[0][-1]]):
return True
return False
@torch.no_grad()
def toysubmission_generate(
model,
tokenizer,
idx: torch.Tensor,
max_returned_tokens: int,
max_seq_length: int,
*,
temperature: float = 1.0,
top_k: Optional[int] = None,
eos_id: Optional[int] = None,
) -> Tuple[List[int], List[float], List[Tuple[int, float]]]:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
idx: Tensor of shape (T) with indices of the prompt sequence.
max_returned_tokens: The maximum number of tokens to return (given plus generated).
max_seq_length: The maximum sequence length allowed. Should be less or equal than the block size.
temperature: Scales the predicted logits by 1 / temperature.
top_k: If specified, only sample among the tokens with the k highest probabilities.
eos_id: If specified, stop generating any more token once the <eos> token is triggered.
Returns:
Tuple containing a list of token indexes, id of the top log probability, and the actual log probability of the
selected token.
"""
T = idx.size(1)
# print(idx.size(0))
assert max_returned_tokens > T
device, dtype = idx.device, idx.dtype
# create an empty tensor of the expected final shape and fill in the current tokens
# import ipdb
# ipdb.set_trace()
# generate up to a fixed number of tokens
if (max_returned_tokens - T) <= 5:
# answers = ["A", "B", "C", "D", "E", "F", "G", "H", "I"]
# tokenized_answers = tokenizer(answers, return_tensors='pt')["input_ids"]
empty = torch.empty(max_returned_tokens, dtype=dtype, device=device)
# print(T)
# print(idx)
empty[:T] = idx
idx = empty
input_pos = torch.arange(0, T, device=device)
top_logprob = []
logprob = []
for _ in range(max_returned_tokens - T):
x = idx.index_select(0, input_pos).view(1, -1)
# forward
# x = tokenizer.convert_ids_to_tokens(x[0])
outputs = model(x)
logits = outputs.logits
# logits = logits.to(ctranslate2.DataType.float32)
# logits = torch.as_tensor(logits, dtype=torch.bfloat16)
# import ipdb
# ipdb.set_trace()
logits_copy = copy.deepcopy(logits.cpu())
logits = logits[0, -1] / temperature
logits_copy = logits_copy[0,-1]
# answer_logits = logits_copy[tokenized_answers]
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits = torch.where(logits < v[[-1]], -float("Inf"), logits)
# import ipdb
# ipdb.set_trace()
probs = torch.nn.functional.softmax(logits, dim=-1)
probs_copy = torch.nn.functional.softmax(logits_copy, dim=-1)
# ans_probs = probs_copy[tokenized_answers]
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)
# idx_next = torch.argmax(probs)
# idx_next = tokenizer(tokenizer.decode([idx_next]).split(" ")[-1])["input_ids"][1]
# idx_next = torch.tensor(idx_next, device=model.device)
# append the logprob of selected token
logprob.append(torch.log(probs_copy[idx_next.cpu()]).item())
# append th idx and logprob of top token
top_logprob.append((torch.argmax(probs).item(), torch.log(probs).max().item()))
# advance
input_pos = torch.arange(0, input_pos[-1]+2, device=idx.device)
# concatenate the new generation
idx = idx.index_copy(0, input_pos[-1], idx_next)
# if <eos> token is triggered, return the output (stop generation)
# if idx_next == eos_id:
# return idx[:input_pos[-1]], logprob, top_logprob # include the EOS token
# else:
# idx = model.generate(input_ids=idx, max_new_tokens=max_returned_tokens - T, top_k=top_k, temperature=temperature, do_sample=True)
# import ipdb
# ipdb.set_trace()
# if max_returned_tokens - T < 5:
# idx = model.generate(input_ids=idx, max_new_tokens=max_returned_tokens - T, top_k=top_k, temperature=temperature, do_sample=True, output_scores=True, return_dict_in_generate=True)
else:
# import ipdb
# ipdb.set_trace()
# stop_words = tokenizer
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops = torch.tensor([[271], [151643], [1406], [382]]), tokenizer=tokenizer)])
idx = model.generate(input_ids=idx, max_new_tokens=max_returned_tokens - T, temperature=temperature, top_k=top_k, do_sample=True, stopping_criteria=stopping_criteria)
# idx = model.generate(input_ids=idx, max_new_tokens=max_returned_tokens - T, num_beams=2, no_repeat_ngram_size=2, early_stopping=True)
# idx = tokenizer.decode(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
# idx = torch.cat([idx, torch.as_tensor(output[0].sequences_ids[0], device=idx.device)])
logprob = [0]*(max_returned_tokens - T)
top_logprob = [(1, 0)]*(max_returned_tokens - T)
idx = idx[0]
return idx, logprob, top_logprob,