Skip to content

Latest commit

 

History

History
31 lines (21 loc) · 778 Bytes

README.md

File metadata and controls

31 lines (21 loc) · 778 Bytes

##StackACPred: prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach

##StackACPred uses the following dependencies:

  • Python 3.6
  • numpy
  • scipy
  • scikit-learn
  • pandas
  • matplotlib
  • MATLAB (R2018a)

##Guiding principles: **The dataset folder contain both ACP740 and ACP240 dataset.

**feature extraction:

  • PAAC.m directory contains PseAAC.m.
  • PsePSSM.m contains PsePSSM.m.
  • Seg-PSSM contain Seg-PSSM.m.

** feature selection:

  • SVM-RFE+CBR.

** Classifier:

  • stacking.py implements stacked ensemble classifier.

** Dataset:

  • ACP740_dataset_.txt contains the data of the ACP and non-ACP dataset.
  • ACP240_dataset_.txt contains the data of the ACP and non-ACP dataset.