forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vision.py
223 lines (182 loc) · 7.24 KB
/
vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright © 2024 Apple Inc.
import inspect
import math
from dataclasses import dataclass
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
@dataclass
class VisionConfig:
model_type: str
num_hidden_layers: int = 24
hidden_size: int = 1024
intermediate_size: int = 4096
num_attention_heads: int = 16
image_size: int = 336
patch_size: int = 14
projection_dim: int = 768
vocab_size: int = 32000
num_channels: int = 3
layer_norm_eps: float = 1e-5
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
class Attention(nn.Module):
def __init__(
self,
dims: int,
num_heads: int,
query_input_dims: Optional[int] = None,
key_input_dims: Optional[int] = None,
value_input_dims: Optional[int] = None,
value_dims: Optional[int] = None,
value_output_dims: Optional[int] = None,
bias: bool = False,
):
super().__init__()
if (dims % num_heads) != 0:
raise ValueError(
"The input feature dimensions should be divisible by the "
f"number of heads ({dims} % {num_heads}) != 0"
)
query_input_dims = query_input_dims or dims
key_input_dims = key_input_dims or dims
value_input_dims = value_input_dims or key_input_dims
value_dims = value_dims or dims
value_output_dims = value_output_dims or dims
self.num_heads = num_heads
self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
def __call__(self, queries, keys, values, mask=None):
queries = self.q_proj(queries)
keys = self.k_proj(keys)
values = self.v_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
_, S, _ = keys.shape
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys
if mask is not None:
scores = scores + mask.astype(scores.dtype)
scores = mx.softmax(scores, axis=-1)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(values_hat)
class MLP(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.activation_fn = nn.GELU(approx="fast")
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def __call__(self, x: mx.array) -> mx.array:
x = self.activation_fn(self.fc1(x))
x = self.fc2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Attention(
config.hidden_size, config.num_attention_heads, bias=True
)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = MLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
y = self.layer_norm1(x)
y = self.self_attn(y, y, y, mask)
x = x + y
y = self.layer_norm2(x)
y = self.mlp(y)
return x + y
class Encoder(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
class VisionEmbeddings(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = mx.zeros((config.hidden_size,))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
def __call__(self, x: mx.array) -> mx.array:
batch_size = x.shape[0]
patch_embeddings = self.patch_embedding(x)
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
embed_dim = patch_embeddings.shape[-1]
cls_embeddings = mx.broadcast_to(
self.class_embedding, (batch_size, 1, embed_dim)
)
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
embeddings += self.position_embedding.weight
return embeddings
class ClipVisionModel(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.embeddings = VisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
self.encoder = Encoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size)
def __call__(
self,
x: mx.array,
output_hidden_states: Optional[bool] = None,
) -> mx.array:
x = self.embeddings(x)
x = self.pre_layrnorm(x)
encoder_states = (x,) if output_hidden_states else None
for l in self.encoder.layers:
x = l(x, mask=None)
if output_hidden_states:
encoder_states = encoder_states + (x,)
pooler_output = self.post_layernorm(x[:, 0, :])
return pooler_output, x, encoder_states
class VisionModel(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.model_type = config.model_type
if self.model_type != "clip_vision_model":
raise ValueError(f"Unsupported model type: {self.model_type}")
self.vision_model = ClipVisionModel(config)
def __call__(
self, x: mx.array, output_hidden_states: Optional[bool] = None
) -> mx.array:
return self.vision_model(x, output_hidden_states)
@staticmethod
def sanitize(weights):
sanitized_weights = {}
for k, v in weights.items():
if "position_ids" in k:
# Remove unused position_ids
continue
elif "patch_embedding.weight" in k:
# PyTorch conv2d weight tensors have shape:
# [out_channels, in_channels, kH, KW]
# MLX conv2d expects the weight be of shape:
# [out_channels, kH, KW, in_channels]
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
else:
sanitized_weights[k] = v
return sanitized_weights