-
Notifications
You must be signed in to change notification settings - Fork 17
/
ssp.py
136 lines (106 loc) · 4.53 KB
/
ssp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
'''
Self supervised attack is purely based on maximizing the perceptual feature difference.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import torchvision.utils as vutils
from torchvision.utils import save_image, make_grid
import os, imageio, argparse
import numpy as np
parser = argparse.ArgumentParser(description='SSP Attack')
parser.add_argument('--sourcedir', default='clean_imgs')
parser.add_argument('--targetdir', default='ssp_adv')
parser.add_argument('--batch_size', type=int, default=200, help='Batch size')
parser.add_argument('--eps', type=int, default= 16, help ='pertrbation budget')
parser.add_argument('--step_size', type=float, default=0.01, help='Step size')
parser.add_argument('--iters', type=int, default=100, help='Number of SSP Iterations')
parser.add_argument('--ssp_layer', type=int, default=16, help='VGG layer that is going to be used in SSP')
args = parser.parse_args()
print(args)
# GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
all_classes = sorted(os.listdir(args.sourcedir))
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
batch_size = args.batch_size
data_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(args.sourcedir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()
])),
batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
# We use keras model to create dataset and run different experiments
class perceptual_criteria(nn.Module):
def __init__(self):
super(perceptual_criteria, self).__init__()
# you can try other models
vgg16 = torchvision.models.vgg16(pretrained=True)
self.vgg16 = nn.Sequential(*list(vgg16.features))[:args.ssp_layer].eval()
# you can try other losses
self.mse = nn.MSELoss()
def forward(self, adv, org):
vgg_out = self.mse(self.vgg16(adv), self.vgg16(org))
return vgg_out
criterion = perceptual_criteria()
criterion.to(device)
def normalize(t):
t[:, 0, :, :] = (t[:, 0, :, :] - mean[0])/std[0]
t[:, 1, :, :] = (t[:, 1, :, :] - mean[1])/std[1]
t[:, 2, :, :] = (t[:, 2, :, :] - mean[2])/std[2]
return t
eps = args.eps / 255
step = args.step_size
counter = 0
current_class = None
current_class_files = None
big_img = []
# labels are just to store the image properly
for i, (img, label) in enumerate(data_loader):
img = img.to(device)
adv = torch.randn(img.shape).to(device)
adv.requires_grad = True
for t in range(100):
adv1 = adv + 0
loss = criterion(normalize(adv1), normalize(img.clone().detach()))
loss.backward()
adv.data = adv.data + step * adv.grad.sign()
adv.data = torch.where(adv.data > img.data + eps, img.data + eps, adv.data)
adv.data = torch.where(adv.data < img.data - eps, img.data - eps, adv.data)
adv.data.clamp_(0.0, 1.0)
adv.grad.data.zero_()
# Distance between image and adversary
print((adv-img).max()*255)
# Courtesy of: https://github.com/rgeirhos/Stylized-ImageNet/blob/master/code/preprocess_imagenet.py
for img_index in range(adv.size()[0]):
source_class = all_classes[label[img_index]]
source_classdir = os.path.join(args.sourcedir, source_class)
assert os.path.exists(source_classdir)
target_classdir = os.path.join(args.targetdir, source_class)
if not os.path.exists(target_classdir):
os.makedirs(target_classdir)
if source_class != current_class:
# moving on to new class:
# start counter (=index) by 0, update list of files
# for this new class
counter = 0
current_class_files = sorted(os.listdir(source_classdir))
current_class = source_class
target_img_path = os.path.join(target_classdir,
current_class_files[counter]).replace(".JPEG", ".png")
adv_to_save = np.transpose(adv[img_index, :, :, :].detach().cpu().numpy(), (1, 2, 0))
adv_to_save = (adv_to_save * 255).round().astype(np.uint8)
imageio.imwrite(target_img_path, adv_to_save, format='png')
# imageio.imwrite(target_img_path, adv_to_save.astype(np.uint8))
# save_image(tensor=adv[img_index, :, :, :],
# filename=target_img_path)
counter += 1
#
# del(img)
# del(adv)
# del(adv1)
print('Number of Images Processed:', (i + 1) * batch_size)