-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathSIDM.cpp
204 lines (185 loc) · 7.5 KB
/
SIDM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
//SIDM- self interacting dark matter by Alexander Fry
#include <math.h>
#ifdef HAVE_VALUES_H
#include <values.h>
#else
#include <float.h>
#endif
#include "ParallelGravity.h"
#include "smooth.h"
#include "SIDM.h"
#include <sys/stat.h>
bool arrayFileExists(const std::string filename, const int64_t count) ;
/**
* @brief Read in array files for SIDM interact count, if needed
*/
void
Main::restartNSIDM()
{
#ifdef SIDMINTERACT
// The following is needed only if we are tracking the number of
// interactions
if(verbosity)
CkPrintf("Restarting NSIDM with array files.\n");
struct stat s;
int err = stat(basefilename.c_str(), &s);
if(err != -1 && S_ISDIR(s.st_mode)) {
// The file is a directory; assume NChilada
int64_t nDark = 0;
if(nTotalDark > 0)
nDark = ncGetCount(basefilename + "/dark/nsidm");
if(nDark == nTotalDark) {
iNSIDMOutputParams pNSIDMOut(basefilename, 6, 0.0);
treeProxy.readFloatBinary(pNSIDMOut, param.bParaRead,
CkCallbackResumeThread());
}
else
CkError("WARNING: no NSIDM file, or wrong format for restart\n");
} else {
// Assume TIPSY arrays
if(arrayFileExists(basefilename + ".nsidm", nTotalParticles)) {
iNSIDMOutputParams pNSIDMOut(basefilename, 0, 0.0);
treeProxy.readTipsyArray(pNSIDMOut, CkCallbackResumeThread());
}
else {
CkError("WARNING: no igasorder file for restart\n");
}
}
#endif
}
///
/// @brief Main method to perform Self Interacting Dark Matter interactions
/// @param dTime current simulation time
/// @param dDelta timestep over which to calculate interactions
/// @param activeRung timestep rung corresponding to dDelta
///
void Main::doSIDM(double dTime,double dDelta, int activeRung) {
if (param.iSIDMSelect!=0) {
double stime = CkWallTimer();
if(verbosity > 0) CkPrintf("SIDM interactions ... ");
SIDMSmoothParams pSIDM(TYPE_DARK, activeRung, param.csm, dTime,param.dSIDMSigma, param.dSIDMVariable,param.iSIDMSelect,param.dDelta );
treeProxy.startSmooth(&pSIDM, 1, param.nSmooth, 0, CkCallbackResumeThread());
if(verbosity > 0) CkPrintf("took %g seconds\n", CkWallTimer() - stime);
}
}
int SIDMSmoothParams::isSmoothActive(GravityParticle *p) {
return (TYPETest(p, iType));
}
void SIDMSmoothParams::initSmoothParticle(GravityParticle *p) {
}
void SIDMSmoothParams::initTreeParticle(GravityParticle *p) {
}
void SIDMSmoothParams::initSmoothCache(GravityParticle *p) {
p->treeAcceleration = p->velocity;
}
void SIDMSmoothParams::combSmoothCache(GravityParticle *p1, ExternalSmoothParticle *p2) {
Vector3D<double> deltav; //vector template notation
deltav=p2->velocity - p2->treeAcceleration;
p1->velocity += deltav;
}
void SIDMSmoothParams::fcnSmooth(GravityParticle *p, int nSmooth, pqSmoothNode *nnList) {
GravityParticle *q;
double fNorm,ih2,r2;
double ran, probability,aDot, dvx,dvy,dvz,dvcosmo;
int i;
double mu, pxcm,pycm,pzcm,pcm0,ux,uy,uz;
double norm,vxcm,vycm,vzcm, m1,m2;
double uvar,vvar;
double sigma_classic, beta, term; //velocity depedence terms
double Sigma = 0.0;
aDot=a*H;
ih2 = invH2(p); //smoothing length, 1/h^2
fNorm = M_1_PI*ih2*sqrt(ih2);
for (i=0;i<nSmooth;++i)
{
q = nnList[i].p;
if (q->iOrder != p->iOrder) //don't interact with self
{
ran=tp->rndGen.dbl(); //random number on [0,1]
dvx = (-p->velocity.x + q->velocity.x)/a - aDot*nnList[i].dx.x; //v or vpred?
dvy = (-p->velocity.y + q->velocity.y)/a - aDot*nnList[i].dx.y;
dvz = (-p->velocity.z + q->velocity.z)/a - aDot*nnList[i].dx.z;
dvcosmo = sqrt(dvx*dvx + dvy*dvy + dvz*dvz); //relative velocity between particles
r2 = nnList[i].fKey*ih2;
if (iSIDMSelect==1)
{
Sigma=dSIDMSigma;
}
else if (iSIDMSelect==2) //classical cross section dSIDMVariable is break in km/s
{
beta=M_PI*dSIDMVariable*dSIDMVariable/(dvcosmo*dvcosmo);
if (beta < .1){
sigma_classic=(4.0*M_PI/ 22.7 ) * beta *beta* log(1.0+(1.0/beta));
}
if ((beta >=.1 ) && (beta<1000)) {
sigma_classic=(8.0*M_PI/ 22.7 ) * beta *beta /( 1.0+1.5* pow(beta,1.65) );
}
if (beta >= 1000.0 ){
term= log(beta)+ 1.0 - .5*(1.0/log(beta));
sigma_classic=(M_PI/ 22.7 ) *term *term;
}
Sigma=sigma_classic*dSIDMSigma; //convert to simulation units
}
else if (iSIDMSelect==3) //resonant cross section, dSIDMVariable is exponent value
{
Sigma=dSIDMSigma*pow(dvcosmo,dSIDMVariable);
}
else
CkAbort("SIDM done with unknown cross section type (iSIDMSelect");
//density in physical units? fNorm*KERNEL( r2 )*(p->mass)/(a*a*a)
probability=Sigma*dvcosmo*dDelta*fNorm*KERNEL( r2, nSmooth )*(q->mass)/(a*a*a*2.0);
//if ( ran>0.999999) {
// CkPrintf("SIDM Diagnostics: %g \n",probability);
// CkPrintf("iOrder: %i, dDelta: %g, dvcosmo: %g, dSIDMSigma: %g \n",p->iOrder,dDelta,dvcosmo, dSIDMSigma);
// CkPrintf("fnorm: %g, kern: %g, r2: %g, q->mass: %g, aaa: %g \n",fNorm,KERNEL( r2 ),r2,(q->mass),(a*a*a*2.0));
// CkPrintf("probability: %g, dvcosmo: %g, sigma: %g \n", probability,dvcosmo,Sigma);
// CkPrintf("iSIDMSelect: %i \n",(int)iSIDMSelect);
// }
if (probability > .1 && ran>0.99999) {
CkPrintf("SIDM Warning! The probability is rather large: %g \n",probability);
CkPrintf("iOrder: %ld, dDelta: %g, dvcosmo: %g, Sigma: %g \n",p->iOrder,dDelta,dvcosmo, Sigma);
CkPrintf("fnorm: %g, kern: %g, r2: %g, q->mass: %g, aaa: %g \n",fNorm,KERNEL( r2, nSmooth ),r2,(q->mass),(a*a*a*2.0));
}
if (probability > ran) {
#ifdef SIDMINTERACT
p->iNSIDMInteractions += 1;
#endif
m1=p->mass;
m2=q->mass;
mu=m1*m2/(m1+m2);
pxcm = -mu*dvx; //momentum COM frame where vx1 is 0
pycm = -mu*dvy;
pzcm = -mu*dvz;
vxcm=-pxcm/m1; //velocity in COM frame where vx1 0
vycm=-pycm/m1;
vzcm=-pzcm/m1;
pcm0=sqrt(pxcm*pxcm+pycm*pycm+pzcm*pzcm);
norm=666;
while (norm>1.0){ //unit sphere point picking (Marsaglia 1972)
uvar=2.0*tp->rndGen.dbl()-1.0; // random number on [-1,1]
vvar=2.0*tp->rndGen.dbl()-1.0;
norm=(uvar*uvar+vvar*vvar);
}
ux=2.0*uvar*sqrt(1.0-uvar*uvar-vvar*vvar);
uy=2.0*vvar*sqrt(1.0-uvar*uvar-vvar*vvar);
uz=1.0-2.0*(uvar*uvar+vvar*vvar);
pxcm=pcm0*ux;
pycm=pcm0*uy;
pzcm=pcm0*uz;
p->velocity.x+=a*(pxcm/m1);
p->velocity.y+=a*(pycm/m1);
p->velocity.z+=a*(pzcm/m1);
q->velocity.x+=a*(-pxcm/m2);
q->velocity.y+=a*(-pycm/m2);
q->velocity.z+=a*(-pzcm/m2);
//to transform back to the lab frame we must add back in the COM velocity
p->velocity.x+=a*(vxcm);
p->velocity.y+=a*(vycm);
p->velocity.z+=a*(vzcm);
q->velocity.x+=a*(vxcm-dvx);
q->velocity.y+=a*(vycm-dvy);
q->velocity.z+=a*(vzcm-dvz);
}
}
}
}