forked from csaluski/interpretable_school_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classification_trees.rmd
180 lines (144 loc) · 5.43 KB
/
classification_trees.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
title: "Interpretable Analysis of School Policy Decisions, Classification Decision Trees"
author: "Charles Saluski"
# date: "1/4/2022"
output: pdf_document
---
The ETLP performance of schools can also be viewed as a classification problem,
where the categories are the binary condition of having a score of 4 or above,
which is the goal that schools are trying to achieve.
```{r}
library(glmnet)
library(mlr3)
library(mlr3learners)
library(data.table)
library(mlr3extralearners)
library(stringr)
csv.data.loc <- "./Data Sources CSV"
ic.joined.dt.loc <- paste(csv.data.loc, "/ic.cwis.nces.computed.combined.csv", sep = "")
cl.joined.dt.loc <- paste(csv.data.loc, "/ic.cwis.nces.cl.computed.combined.csv", sep = "")
ic.joined.dt <- fread(ic.joined.dt.loc)
cl.joined.dt <- fread(cl.joined.dt.loc)
```
```{r}
# these variables are character and variables used in earlier joins so they are not needed
exclude.cols <- c("X", "State.District.ID", "session", "NCES.District.Name..to.check.", "NCES.District.Name.(to.check)", "School.District", "Teacher_leader_More_than_6", "Total_more_than_10", "V1")
ic.predict.dt <- ic.joined.dt[, !..exclude.cols]
ic.predict.dt <- ic.predict.dt[complete.cases(ic.predict.dt[, ])]
cl.predict.dt <- cl.joined.dt[, !..exclude.cols]
etlp.goal <- 4
for (col in colnames(ic.predict.dt)) {
new_name <- str_replace_all(col, "[^[:alnum:]._]", ".")
setnames(ic.predict.dt, col, new_name)
}
for (col in colnames(cl.predict.dt)) {
new_name <- str_replace_all(col, "[^[:alnum:]._]", ".")
setnames(cl.predict.dt, col, new_name)
}
ic.predict.dt[, etlp.gte.goal := factor(ETLP_avg >= etlp.goal, labels = c("LT Goal", "GTE Goal"))]
cl.predict.dt[, etlp.gte.goal := factor(ETLP_avg >= etlp.goal, labels = c("LT Goal", "GTE Goal"))]
ic.predict.dt$ETLP_avg <- NULL
cl.predict.dt$ETLP_avg <- NULL
ic.predict.no.avg.dt <- ic.predict.dt[, !c("CFA_avg", "PD_avg", "DBDM_avg", "Leadership_avg")]
cl.predict.no.avg.dt <- cl.predict.dt[, !c("CFA_avg", "PD_avg", "DBDM_avg", "Leadership_avg")]
```
```{r}
set.seed(123)
num.folds <- 10
task.ic.classif <- TaskClassif$new(
id = "task.ic.classif",
backend = ic.predict.dt,
target = "etlp.gte.goal",
positive = "GTE Goal")
task.coaching.classif <- TaskClassif$new(
id = "task.coaching.classif",
backend = cl.predict.dt,
target = "etlp.gte.goal",
positive = "GTE Goal")
task.ic.no.avg.classif <- TaskClassif$new(
id = "task.ic.no.avg.classif",
backend = ic.predict.no.avg.dt,
target = "etlp.gte.goal",
positive = "GTE Goal")
task.coaching.no.avg.classif <- TaskClassif$new(
id = "task.coaching.no.avg.classif",
backend = cl.predict.no.avg.dt,
target = "etlp.gte.goal",
positive = "GTE Goal")
task.name.vec <- c("task.ic.classif", "task.coaching.classif", "task.ic.no.avg.classif", "task.coaching.no.avg.classif")
task.list <- list(task.ic.classif, task.coaching.classif, task.ic.no.avg.classif, task.coaching.no.avg.classif)
learner.name.vec <- c("classif.featureless", "classif.cforest")
learner.list <- list()
for (name in learner.name.vec) {
learner.list[[name]] <- lrn(name, predict_type = "prob")
}
learner.list[["classif.ctree"]] <- lrn("classif.ctree", predict_type = "prob", mincriterion = 0.9)
measure <- msr("classif.auc")
resampling <- rsmp("cv", folds = num.folds)
benchmark.obj <- benchmark_grid(
task = task.list,
learners = learner.list,
resamplings = list(resampling)
)
benchmark.res <- benchmark(benchmark.obj, store_models = TRUE)
result.dt <- benchmark.res$score(measure)
```
```{r}
library(ggplot2)
method.levels <- result.dt[, .(mean = mean(classif.auc)), by = learner_id][order(mean), learner_id]
result.dt[, Method := factor(learner_id, method.levels)]
err.plot <- ggplot() +
geom_point(data = result.dt, aes(x = classif.auc, y = Method)) +
facet_grid(task_id ~ ., labeller = label_both)
err.plot
png(filename = "./img_out/decision.binary.tree.auc.png", width = 6, height = 4, unit = "in", res = 200)
print(err.plot)
dev.off()
```
```{r}
ctree_var_extract <- function(ctree, var.acc.v) {
if (!is.null(ctree)) {
var.acc.v <- c(var.acc.v, attributes(ctree$info$p.value)$names)
for (i in 1:length(ctree$kids)) {
var.acc.v <- ctree_var_extract(ctree$kids[[i]], var.acc.v)
}
}
var.acc.v
}
ctree.dt <- result.dt[learner_id == "classif.ctree"]
ctree.var.list <- list()
for (task.name in task.name.vec) {
curr.learners <- ctree.dt[task.name == task_id]$learner
for (cv.id in 1:num.folds) {
curr.vars <- ctree_var_extract(curr.learners[[cv.id]]$model$node, vector())
var.count.dt <- as.data.table(table(curr.vars))
var.count.dt[, times.in.tree := N]
ctree.var.list[[paste(task.name, cv.id)]] <- data.table(
task_id = task.name,
var.count.dt,
cv.id
)
}
}
# convert all the above code into this single block
ctree.var.dt <- ctree.dt[, {
curr.learner <- learner[[1]]
res.vars <- ctree_var_extract(curr.learner$model$node, vector())
as.data.table(table(res.vars))
}, by=.(iteration, task_id)]
ctree.var.dt[, times.in.tree := N]
ctree.var.dt[, occurence.n.folds := sum(times.in.tree != 0), by=.(res.vars, task_id)]
```
```{r}
ctree.model.list <- list()
for (task.name in task.name.vec) {
curr.dt <- ctree.dt[task_id == task.name]
for (fold in 1:num.folds) {
curr.tree <- curr.dt[iteration == fold]$learner[[1]]$model
filename <- paste("./img_out/", paste(task.name, fold, "tree.png", sep = "."), sep = "")
png(filename = filename, width = 20, height = 6, unit = "in", res = 200)
plot(curr.tree)
dev.off()
}
}
```