forked from csaluski/interpretable_school_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
decisiontrees.rmd
194 lines (165 loc) · 6.23 KB
/
decisiontrees.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
title: "Interpretable Analysis of School Policy Decisions, Decision Trees"
author: "Charles Saluski"
# date: "1/4/2022"
output: pdf_document
---
```{r}
library(glmnet)
library(mlr3)
library(mlr3learners)
library(data.table)
library(mlr3extralearners)
library(mlr3tuning)
csv.data.loc <- "./Data Sources CSV"
ic.joined.dt.loc <- paste(csv.data.loc, "/ic.cwis.nces.computed.combined.csv", sep = "")
cwis.joined.dt.loc <- paste(csv.data.loc, "/cwis.nces.computed.combined.csv", sep = "")
cl.joined.dt.loc <- paste(csv.data.loc, "/ic.cwis.nces.cl.computed.combined.csv", sep = "")
ic.joined.dt <- as.data.table(read.csv(ic.joined.dt.loc))
cwis.joined.dt <- as.data.table(read.csv(cwis.joined.dt.loc))
cl.joined.dt <- as.data.table(read.csv(cl.joined.dt.loc))
ic.joined.dt <- ic.joined.dt[complete.cases(ic.joined.dt)]
cwis.joined.dt <- cwis.joined.dt[complete.cases(cwis.joined.dt)]
cl.joined.dt <- cl.joined.dt[complete.cases(cl.joined.dt)]
data.set.list <- list("IC" = ic.joined.dt, "CWIS" = cwis.joined.dt, "CL" = cl.joined.dt)
```
```{r}
# these variables are character and variables used in earlier joins so they are not needed
standard.exclude.cols <- c("X", "State.District.ID", "CWIS_session", "IC_NCES.District.Name..to.check.", "IC_School.District", "IC_Teacher_leader_More_than_6", "IC_Total_more_than_10")
cfa.exclude.cols <- c(standard.exclude.cols, "CWIS_CFA_avg")
cwis.exclude.cols <- c(cfa.exclude.cols, "CWIS_DBDM_avg", "CWIS_PD_avg", "CWIS_Leadership_avg")
exclude.set.list <- list("standard" = standard.exclude.cols, "CFA" = cfa.exclude.cols, "CWIS" = cwis.exclude.cols)
task.list <- list()
for (exclude.set in names(exclude.set.list)) {
exclude.cols <- exclude.set.list[[exclude.set]]
for (data.set in names(data.set.list)) {
curr.dt <- data.set.list[[data.set]][, !c(..exclude.cols)]
task.name <- paste(data.set, "excl.", exclude.set)
task.list[[task.name]] <- TaskRegr$new(id = task.name, backend = curr.dt, target = "CWIS_ETLP_avg")
}
}
for (exclude.set in names(exclude.set.list)) {
if (exclude.set == "standard") {
exclude.cols <- exclude.set.list[[exclude.set]]
for (data.set in names(data.set.list)) {
curr.dt <- data.set.list[[data.set]][, !c("CWIS_ETLP_avg", ..exclude.cols)]
task.name <- paste("CFA", data.set, "excl.", exclude.set)
task.list[[task.name]] <- TaskRegr$new(id = task.name, backend = curr.dt, target = "CWIS_CFA_avg")
}
}
}
task.name.vec <- names(task.list)
```
```{r}
set.seed(123)
num.folds <- 10
# uncomment to run code in parallel, has some issues for me, as it allocates
# memory for all of the tasks at once, instead of over time and not all at once.
# if (future::supportsMulticore()) {
# future::plan("multicore", workers=4)
# } else {
# future::plan(future::multisession)
# }
# task.backend.names <- c("ic.predict.dt", )
measure <- msr("regr.mse")
resampling <- rsmp("cv", folds = num.folds)
# cv_glmnet returns 2 models, one with s1 and one with minimum
learner.name.vec <- c("regr.cv_glmnet", "regr.featureless", "regr.ctree", "regr.cforest")
learner.list <- list()
for (name in learner.name.vec) {
learner.list[[name]] <- lrn(name)
}
learner.list[["xgboost.at.lrn"]] <- AutoTuner$new(
learner = lrn("regr.xgboost"),
resampling = rsmp("cv", folds = 3),
measure = measure, # mean squared error
search_space = ps(
eta = p_dbl(lower = 0, upper = 1),
nrounds = p_int(lower = 1, upper = 16)
),
terminator = trm("none"),
tuner = tnr("grid_search", resolution = 4),
store_tuning_instance = TRUE
)
learner.name.vec <- names(learner.list)
benchmark.obj <- benchmark_grid(
task = task.list,
learners = learner.list,
resamplings = list(resampling)
# tasks, learners, and resamplings
# we'll only give a learner vector, same tasks and resamplings
)
benchmark.res <- benchmark(benchmark.obj, store_models = TRUE)
result.dt <- benchmark.res$score(measure)
```
```{r}
library(ggplot2)
method.levels <- result.dt[, .(mean = mean(regr.mse)), by = learner_id][order(-mean), learner_id]
result.dt[, Method := factor(learner_id, method.levels)]
err.plot <- ggplot() +
geom_point(data = result.dt, aes(x = regr.mse, y = Method)) +
facet_grid(task_id ~ .)
if (!dir.exists("./img_out/decision_trees/")) {
dir.create("./img_out/decision_trees/")
}
png(filename = "./img_out/decision_trees/decision.tree.loss.png", width = 6, height = 20, unit = "in", res = 200)
print(err.plot)
dev.off()
```
```{r}
ctree_var_extract <- function(ctree, var.acc.v) {
if (!is.null(ctree)) {
var.acc.v <- c(var.acc.v, attributes(ctree$info$p.value)$names)
for (i in 1:length(ctree$kids)) {
var.acc.v <- ctree_var_extract(ctree$kids[[i]], var.acc.v)
}
}
var.acc.v
}
ctree.dt <- result.dt[learner_id == "regr.ctree"]
# convert all the above code into this single block
ctree.var.dt <- ctree.dt[, {
curr.learner <- learner[[1]]
res.vars <- ctree_var_extract(curr.learner$model$node, vector())
as.data.table(table(res.vars))
}, by=.(iteration, task_id)]
ctree.var.dt[, times.in.tree := N]
ctree.var.dt[, occurence.n.folds := sum(times.in.tree != 0), by=.(res.vars, task_id)]
```
```{r}
for (task.name in task.name.vec) {
var.count.plot <- ggplot() +
geom_point(data = ctree.var.dt[task_id == task.name], aes(x = times.in.tree, y = res.vars)) +
facet_grid(occurence.n.folds ~ ., scales = "free", space = "free")
dest <- "./img_out/decision_trees/"
if (!dir.exists(dest)) {
dir.create(dest)
}
filename <- paste(task.name, "count.png", sep = "_")
filename <- paste0(dest, filename, sep = "")
png(filename = filename, width = 8, height = 6, unit = "in", res = 200)
print(var.count.plot)
dev.off()
}
```
```{r}
ctree.model.list <- list()
if (!dir.exists("./img_out/decision_trees/trees")) {
dir.create("./img_out/decision_trees/trees")
}
for (task.name in task.name.vec) {
curr.dt <- ctree.dt[task_id == task.name]
dest <- paste("./img_out/decision_trees/trees/", task.name, sep = "")
if (!dir.exists(dest)) {
dir.create(dest)
}
for (fold in 1:num.folds) {
curr.tree <- curr.dt[iteration == fold]$learner[[1]]$model
filename <- paste(task.name, fold, "tree.png", sep = "_")
filename <- paste(dest, filename, sep = "/")
png(filename = filename, width = 20, height = 6, unit = "in", res = 200)
plot(curr.tree)
dev.off()
}
}
```