forked from csaluski/interpretable_school_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
super_subgroup_prediction.rmd
420 lines (358 loc) · 15.2 KB
/
super_subgroup_prediction.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
---
title: "Interpretable Analysis of School Policy Decisions, By Years in Program"
author: "Charles Saluski"
# date: "1/4/2022"
output: pdf_document
---
```{r}
library(data.table)
library(dplyr)
library(stringr)
library(purrr)
library(mlr3)
library(mlr3learners)
library(mlr3extralearners)
library(mlr3tuning)
```
```{r}
district.map.dt <- fread("Data Sources CSV/building_map_data/District MAP content area and grade all disag.csv")
district.map.dt <- district.map.dt%>%
mutate(PROFICIENT_PCT=as.numeric(PROFICIENT_PCT))%>%
mutate(BELOW_BASIC_PCT=as.numeric(BELOW_BASIC_PCT))%>%
mutate(ADVANCED_PCT=as.numeric(ADVANCED_PCT))%>%
mutate(PCT_PROFICIENT_AND_ADVANCED=PROFICIENT_PCT+ADVANCED_PCT)%>%
select(YEAR:GRADE_LEVEL,BELOW_BASIC_PCT:PCT_PROFICIENT_AND_ADVANCED)
district.map.dt <- district.map.dt[GRADE_LEVEL=='03'&CONTENT_AREA=='Eng. Language Arts' & TYPE %in% c("Total", "IEP_student")]
district.map.total <- district.map.dt[TYPE=="Total", .(YEAR, COUNTY_DISTRICT, below.basic.pct.total = BELOW_BASIC_PCT, prof.pct.total = PROFICIENT_PCT, adv.pct.total = ADVANCED_PCT, prof.and.adv.pct.total = PCT_PROFICIENT_AND_ADVANCED)]
district.map.iep <- district.map.dt[TYPE=="IEP_student", .(YEAR, COUNTY_DISTRICT, below.basic.pct.iep = BELOW_BASIC_PCT, prof.pct.iep = PROFICIENT_PCT, adv.pct.iep = ADVANCED_PCT, prof.and.adv.pct.iep = PCT_PROFICIENT_AND_ADVANCED)]
district.map.combined <- district.map.total[district.map.iep, on = c("YEAR", "COUNTY_DISTRICT")]
district.map.combined <- district.map.combined[complete.cases(district.map.combined)]
district.map.combined[, prof.and.adv.pct.gap := prof.and.adv.pct.total - prof.and.adv.pct.iep]
# In this table the year is when the MAP was taken, not the start of the
# school year like in our other tables, so we make them the same
district.map.combined[, year := YEAR - 1]
district.map.combined$YEAR <- NULL
```
```{r}
full.dt <- fread("./Data Sources CSV/ic.cwis.nces.cl.computed.combined.csv")
full.dt$V1 <- NULL
full.dt$V1 <- NULL
for (col in colnames(full.dt)) {
new_name <- str_replace_all(col, "[^[:alnum:]._]", ".")
setnames(full.dt, col, new_name)
}
full.dt[, COUNTY_DISTRICT := as.integer(str_extract(State.District.ID, "\\d+"))]
full.dt <- full.dt[district.map.combined, on = c("COUNTY_DISTRICT", "year")]
# full.dt <- full.dt[iep.dt, on = c("State.District.ID", "year")]
full.dt <- full.dt[complete.cases(full.dt)]
```
Add attendance and discipline statistics
```{r}
full.dt[, COUNTY_DISTRICT_CODE := str_extract(State.District.ID, "\\d{6}")]
discipline.dt <- fread("Data Sources CSV/District Discipline.csv")
attendance.dt <- fread("Data Sources CSV/District Proportional Attendance Rates.csv")
discipline.dt <- discipline.dt[, .(YEAR, COUNTY_DISTRICT_CODE, DSCPLN_INCIDENT_RATE)]
attendance.dt <- attendance.dt[, .(YEAR, COUNTY_DISTRICT_CODE, PROPORTIONAL_ATTENDANCE_TOTAL_PCT, PROPORTIONAL_ATTENDANCE_IEP_PCT)]
discipline.dt[, COUNTY_DISTRICT_CODE := str_pad(COUNTY_DISTRICT_CODE, 6, "left", "0")]
attendance.dt[, COUNTY_DISTRICT_CODE := str_pad(COUNTY_DISTRICT_CODE, 6, "left", "0")]
discipline.dt <- attendance.dt[discipline.dt, on=c("COUNTY_DISTRICT_CODE", "YEAR")]
full.dt <- full.dt[discipline.dt, on=c("COUNTY_DISTRICT_CODE", "year" = "YEAR")]
full.dt <- full.dt[complete.cases(full.dt)]
for (col in names(full.dt)) {
if (grepl("PCT", col)) {
full.dt[, paste0(col) := as.numeric(get(col))]
}
}
```
```{r}
full.dt[, year.in.program := (year - min(year)) + 1, by = "State.District.ID"]
full.dt[, cohort := paste(year, year.in.program, sep=".")]
full.dt <- full.dt[complete.cases(full.dt[, ])]
# find change between 1st and 2nd year and 2nd and 3rd year
# self join on year = year - 1, then subtract each 1st row from the 2nd
yoy.dt <- merge(
full.dt, full.dt,
by = "State.District.ID",
allow.cartesian = TRUE, suffixes = c(".before", ".after")
)[,
year.diff := year.in.program.after - year.in.program.before
][year.diff > 0]
diff.cols <- names(full.dt)[as.vector(sapply(full.dt, class)) %in% c("numeric", "num", "int")]
for (col in diff.cols) {
diff.col.name <- paste(col, "diff", sep=".")
col.x.name <- c(paste(col, "before", sep="."))
col.y.name <- c(paste(col, "after", sep="."))
# I can't get this to work just using the variable names, so we're using get
yoy.dt[[diff.col.name]] <- yoy.dt[, get(col.y.name) - get(col.x.name)]
}
```
```{r}
yoy.exclude.char.cols <- names(yoy.dt)[as.vector(sapply(yoy.dt, class)) %in% c("character")]
full.exclude.char.cols <- names(full.dt)[as.vector(sapply(full.dt, class)) %in% c("character")]
exclude.cols <- c(yoy.exclude.char.cols, full.exclude.char.cols, "X", "SUMMARY_LEVEL", "DISTRICT_NAME", "CATEGORY", "TYPE", "SCHOOL_NAME", "CONTENT_AREA", "prof.and.adv.pct.total", "prof.pct.total", "prof.pct.iep", "adv.pct.total", "adv.pct.iep", "cohort",
"below.basic.pct.total", "below.basic.pct.iep")
exclude.avg.cols <- c("CFA_avg", "PD_avg", "DBDM_avg", "Leadership_avg")
exclude.col.set.list <- list(
"standard" = exclude.cols
,"avgs" = c(exclude.cols, exclude.avg.cols)
)
task.list <- list()
for (select.year in unique(full.dt$year.in.program)) {
current.cohort <- full.dt[full.dt$year.in.program == select.year, ]
for (exclude.col.set in names(exclude.col.set.list)) {
exclude.set.vec <- exclude.col.set.list[[exclude.col.set]]
current.set.dt <- current.cohort[, !..exclude.set.vec]
id <- paste("after", select.year, "year excl", exclude.col.set, "gap", sep=" ")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt,
target = "prof.and.adv.pct.gap"
)
id <- paste("after", select.year, "year excl", exclude.col.set, "iep", sep=" ")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap")],
target = "prof.and.adv.pct.iep"
)
}
}
for (select.year in unique(full.dt$year)) {
current.cohort <- full.dt[full.dt$year == select.year, ]
for (exclude.col.set in names(exclude.col.set.list)) {
exclude.set.vec <- exclude.col.set.list[[exclude.col.set]]
current.set.dt <- current.cohort[, !..exclude.set.vec]
id <- paste("year", select.year, "excl", exclude.col.set, "gap", sep=" ")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt,
target = "prof.and.adv.pct.gap"
)
id <- paste("year", select.year, "excl", exclude.col.set, "iep", sep=" ")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap")],
target = "prof.and.adv.pct.iep"
)
}
}
# Do the full regression models for every year in the program
for (select_year in unique(yoy.dt$year.in.program.before)) {
current.cohort <- yoy.dt[yoy.dt$year.in.program.before == select_year, !c("cohort")]
for (exclude.set in names(exclude.col.set.list)) {
exclude.set.vec <- exclude.col.set.list[[exclude.set]]
current.set.dt <- current.cohort[, !..exclude.set.vec]
# id <- paste("cohort yr", select_year, "excl", exclude.set, "ETLP before")
# task.list[[id]] <- TaskRegr$new(
# id = id,
# backend = current.set.dt,
# target = "ETLP_avg.before"
# )
id <- paste("cohort yr", select_year, "excl", exclude.set, "ELA before")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap.after")],
target = "prof.and.adv.pct.gap.before"
)
# id <- paste("cohort yr", select_year, "excl", exclude.set, "ETLP after")
# task.list[[id]] <- TaskRegr$new(
# id = id,
# backend = current.set.dt,
# target = "ETLP_avg.after"
# )
id <- paste("cohort yr", select_year, "excl", exclude.set, "ELA after")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap.before")],
target = "prof.and.adv.pct.gap.after"
)
# id <- paste("cohort yr", select_year, "excl", exclude.set, "ETLP diff")
# task.list[[id]] <- TaskRegr$new(
# id = id,
# backend = current.set.dt[, !c("ETLP_avg.before", "ETLP_avg.after")],
# target = "ETLP_avg.diff"
# )
id <- paste("cohort yr", select_year, "excl", exclude.set, "ELA diff")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap.before", "prof.and.adv.pct.gap.after")],
target = "prof.and.adv.pct.gap.diff"
)
}
}
# Do the full regression model for every year of the MAP
for (select_year in unique(yoy.dt$year.before)) {
current.year <- yoy.dt[yoy.dt$year.before == select_year, !c("cohort")]
for (exclude.set in names(exclude.col.set.list)) {
exclude.set.vec <- exclude.col.set.list[[exclude.set]]
current.set.dt <- current.year[, !..exclude.set.vec]
# id <- paste("year", select_year, "excl", exclude.set, "ETLP before")
# task.list[[id]] <- TaskRegr$new(
# id = id,
# backend = current.set.dt,
# target = "ETLP_avg.before"
# )
id <- paste("year", select_year, "excl", exclude.set, "ELA before")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap.after")],
target = "prof.and.adv.pct.gap.before"
)
# id <- paste("year", select_year, "excl", exclude.set, "ETLP after")
# task.list[[id]] <- TaskRegr$new(
# id = id,
# backend = current.set.dt,
# target = "ETLP_avg.after"
# )
id <- paste("year", select_year, "excl", exclude.set, "ELA after")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap.before")],
target = "prof.and.adv.pct.gap.after"
)
# id <- paste("year", select_year, "excl", exclude.set, "ETLP diff")
# task.list[[id]] <- TaskRegr$new(
# id = id,
# backend = current.set.dt[, !c("ETLP_avg.before", "ETLP_avg.after")],
# target = "ETLP_avg.diff"
# )
id <- paste("year", select_year, "excl", exclude.set, "ELA diff")
task.list[[id]] <- TaskRegr$new(
id = id,
backend = current.set.dt[, !c("prof.and.adv.pct.gap.before", "prof.and.adv.pct.gap.after")],
target = "prof.and.adv.pct.gap.diff"
)
}
}
task.name.vec <- names(task.list)
```
```{r}
learner.list <- list()
learner.list[["regr.featureless"]] <- LearnerRegrFeatureless$new()
learner.list[["regr.ctree"]] <- LearnerRegrCTree$new()
learner.list[["regr.cv_glmnet"]] <- LearnerRegrCVGlmnet$new()
learner.list[["regr.cforest"]] <- LearnerRegrCForest$new()
# Random forests and tuned ctrees are not providing any benefit over a default
# ctree, so we don't bother with them.
# learner.list[["regr.at.ctree"]] <- mlr3tuning::AutoTuner$new(
# learner = mlr3extralearners::lrn("regr.ctree"),
# resampling = mlr3::rsmp("cv", folds = 3),
# measure = msr("regr.mse"),
# search_space = paradox::ps(
# mincriterion = paradox::p_dbl(lower = 0, upper = 1)
# ),
# terminator = mlr3tuning::trm("none"),
# tuner = mlr3tuning::tnr("grid_search", resolution = 11),
# store_tuning_instance = TRUE
# )
learner.list[["regr.at.xgboost"]] <- AutoTuner$new(
learner = lrn("regr.xgboost"),
resampling = rsmp("cv", folds = 3),
measure = msr("regr.mse"),
search_space = ps(
eta = p_dbl(lower = 0, upper = 1),
nrounds = p_int(lower = 1, upper = 16)
),
terminator = trm("none"),
tuner = tnr("grid_search", resolution = 4),
store_tuning_instance = TRUE
)
learner.name.vec <- names(learner.list)
num.folds <- 10
resampling <- rsmp("cv", folds = num.folds)
benchmark.obj <- benchmark_grid(
task = task.list,
learners = learner.list,
resamplings = list(resampling)
)
benchmark.res <- benchmark(benchmark.obj, store_models = TRUE)
measure <- msr("regr.mse")
result.dt <- benchmark.res$score(measure)
```
```{r}
library(ggplot2)
method.levels <- result.dt[, .(mean = mean(regr.mse)), by = learner_id][order(-mean), learner_id]
result.dt[, Method := factor(learner_id, method.levels)]
result.dt[, mean := mean(regr.mse), by = c("learner_id", "task_id")]
plot.dt <- result.dt
err.plot <- ggplot() +
geom_point(data = plot.dt, aes(x = mean, y = Method), size = 2, color = "red") +
geom_point(data = plot.dt, aes(x = regr.mse, y = Method)) +
facet_grid(task_id ~ .)
png(filename = "./img_out/iep_analysis/iep_ela_delinq.loss_2.mse.png", width = 6, height = 60, unit = "in", res = 200)
print(err.plot)
dev.off()
```
```{r}
result.dt[, baseline := .SD[learner_id == "regr.featureless", regr.mse], by=c("task_id", "iteration")]
result.dt[, baseline.mean := mean(baseline), by=c("task_id", "learner_id")]
result.dt[, vs.baseline := baseline.mean - regr.mse ]
result.dt[, mean.vs.baseline := mean(vs.baseline), by=c("task_id", "learner_id")]
improved.ctrees <- unique(result.dt[mean.vs.baseline > 0.25*baseline.mean & learner_id == "regr.ctree"]$task_id)
plot.dt <- result.dt[task_id %in% improved.ctrees]
err.plot <- ggplot() +
geom_point(data = plot.dt, aes(x = mean, y = Method), size = 2, color = "red") +
geom_point(data = plot.dt, aes(x = regr.mse, y = Method)) +
facet_grid(task_id ~ .)
png(filename = "./img_out/iep_analysis/iep_ela_improved.loss_2.mse.png", width = 6, height = 12, unit = "in", res = 200)
print(err.plot)
dev.off()
for (task.name in improved.ctrees) {
curr.dt <- result.dt[task_id == task.name & learner_id == "regr.ctree"]
path <- paste("./img_out/iep_analysis/trees/", task.name, sep="")
dir.create(path, recursive = TRUE)
for (fold in 1:num.folds) {
curr.tree <- curr.dt[iteration == fold]$learner[[1]]$model
filename <- paste(task.name, fold, "tree.png", sep = "_")
dest <- paste(path, filename, sep = "/")
png(filename = dest, width = 20, height = 6, unit = "in", res = 200)
plot(curr.tree)
dev.off()
}
}
```
```{r}
# we want a dt with each model's coefficients
# then count and display which coefficients are important
cv.glm.dt <- result.dt[learner_id == "regr.cv_glmnet"]
glm.method.v <- c("lambda.min", "lambda.1se")
glm.coef.list <- list()
for (task.name in task.name.vec) {
curr.dt <- cv.glm.dt[task_id == task.name]
for (method in glm.method.v) {
for (fold in 1:num.folds) {
curr.coef.mat <- as.matrix(
coef(curr.dt[iteration == fold]$learner[[1]]$model, s = method)[-1, ]
)
glm.coef.list[[paste(method, task.name, fold)]] <- data.table(
method,
var = rownames(curr.coef.mat),
coef = as.numeric(curr.coef.mat),
task_id = task.name
)
}
}
}
# this dt has columns of coefs of each var and a column with the method
glm.coef.dt <- do.call(rbind, glm.coef.list)
# dt with var method coef
# make count
glm.coef.dt[, count := sum(coef != 0), by = .(method, task_id, var)]
for (method.select in glm.method.v) {
for (task.name in task.name.vec) {
var.coef.plot <- ggplot() +
geom_point(data = glm.coef.dt[method.select == method & task_id == task.name & count > 0], aes(x = coef, y = var)) +
facet_grid(count ~ ., scales = "free", space = "free") +
ggtitle(paste("coefficients of model ", method.select, " in task ", task.name))
# scale_y_continuous(breaks=1:num.folds)
dest <- paste("./img_out/iep full ", method.select, "/", sep = "")
if (!dir.exists(dest)) {
dir.create(dest)
}
filename <- paste(dest, task.name, ".png", sep = "")
print(filename)
png(filename = filename, width = 8, height = 8, unit = "in", res = 200)
print(var.coef.plot)
dev.off()
}
}
```