|
| 1 | +# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import asyncio |
| 17 | +from typing import List |
| 18 | + |
| 19 | +import pytest |
| 20 | + |
| 21 | +from nemoguardrails.embeddings.providers import ( |
| 22 | + init_embedding_model, |
| 23 | + register_embedding_provider, |
| 24 | +) |
| 25 | +from nemoguardrails.embeddings.providers.base import EmbeddingModel |
| 26 | + |
| 27 | +SUPPORTED_PARAMS = {"param1", "param2"} |
| 28 | + |
| 29 | + |
| 30 | +class MockEmbeddingModel(EmbeddingModel): |
| 31 | + """Mock embedding model for testing purposes. |
| 32 | +
|
| 33 | + Supported embedding models: |
| 34 | + - mock-embedding-small: Embedding size of 128. |
| 35 | + - mock-embedding-large: Embedding size of 256. |
| 36 | + Supported parameters: |
| 37 | + - param1 |
| 38 | + - param2 |
| 39 | +
|
| 40 | + Args: |
| 41 | + embedding_model (str): The name of the embedding model. |
| 42 | +
|
| 43 | + Attributes: |
| 44 | + model (str): The name of the embedding model. |
| 45 | + embedding_size (int): The size of the embeddings. |
| 46 | +
|
| 47 | + Methods: |
| 48 | + encode: Encode a list of documents into embeddings. |
| 49 | + """ |
| 50 | + |
| 51 | + engine_name = "mock_engine" |
| 52 | + |
| 53 | + def __init__(self, embedding_model: str, **kwargs): |
| 54 | + self.model = embedding_model |
| 55 | + self.embedding_size_dict = { |
| 56 | + "mock-embedding-small": 128, |
| 57 | + "mock-embedding-large": 256, |
| 58 | + } |
| 59 | + |
| 60 | + self.embedding_params = kwargs |
| 61 | + |
| 62 | + if self.model not in self.embedding_size_dict: |
| 63 | + raise ValueError(f"Invalid embedding model: {self.model}") |
| 64 | + |
| 65 | + supported_params = SUPPORTED_PARAMS |
| 66 | + |
| 67 | + for param in self.embedding_params: |
| 68 | + if param not in supported_params: |
| 69 | + raise ValueError(f"Unsupported parameter: {param}") |
| 70 | + |
| 71 | + self.embedding_size = self.embedding_size_dict[self.model] |
| 72 | + |
| 73 | + async def encode_async(self, documents: List[str]) -> List[List[float]]: |
| 74 | + """Encode a list of documents into embeddings asynchronously. |
| 75 | +
|
| 76 | + Args: |
| 77 | + documents (List[str]): The list of documents to be encoded. |
| 78 | +
|
| 79 | + Returns: |
| 80 | + List[List[float]]: The encoded embeddings. |
| 81 | + """ |
| 82 | + return await asyncio.get_running_loop().run_in_executor( |
| 83 | + None, self.encode, documents |
| 84 | + ) |
| 85 | + |
| 86 | + def encode(self, documents: List[str]) -> List[List[float]]: |
| 87 | + """Encode a list of documents into embeddings. |
| 88 | +
|
| 89 | + Args: |
| 90 | + documents (List[str]): The list of documents to be encoded. |
| 91 | +
|
| 92 | + Returns: |
| 93 | + List[List[float]]: The encoded embeddings. |
| 94 | + """ |
| 95 | + return [[float(i) for i in range(self.embedding_size)] for _ in documents] |
| 96 | + |
| 97 | + |
| 98 | +register_embedding_provider(MockEmbeddingModel) |
| 99 | + |
| 100 | + |
| 101 | +def test_init_embedding_model_with_params(): |
| 102 | + embedding_model = "mock-embedding-small" |
| 103 | + embedding_engine = "mock_engine" |
| 104 | + supported_param = next(iter(SUPPORTED_PARAMS)) |
| 105 | + embedding_params = {supported_param: "value1"} |
| 106 | + model = init_embedding_model(embedding_model, embedding_engine, embedding_params) |
| 107 | + assert isinstance(model, MockEmbeddingModel) |
| 108 | + assert model.model == embedding_model |
| 109 | + assert model.embedding_size == 128 |
| 110 | + assert model.engine_name == embedding_engine |
| 111 | + assert model.embedding_params == embedding_params |
| 112 | + |
| 113 | + |
| 114 | +def test_init_embedding_model_without_params(): |
| 115 | + embedding_model = "mock-embedding-large" |
| 116 | + embedding_engine = "mock_engine" |
| 117 | + model = init_embedding_model(embedding_model, embedding_engine) |
| 118 | + assert isinstance(model, MockEmbeddingModel) |
| 119 | + assert model.model == embedding_model |
| 120 | + assert model.embedding_size == 256 |
| 121 | + assert model.engine_name == embedding_engine |
| 122 | + assert model.embedding_params == {} |
| 123 | + |
| 124 | + |
| 125 | +def test_init_embedding_model_with_unsupported_params(): |
| 126 | + embedding_model = "mock-embedding-small" |
| 127 | + embedding_engine = "mock_engine" |
| 128 | + embedding_params = {"unsupported_param": "value"} |
| 129 | + with pytest.raises(ValueError, match="Unsupported parameter: unsupported_param"): |
| 130 | + init_embedding_model(embedding_model, embedding_engine, embedding_params) |
| 131 | + |
| 132 | + |
| 133 | +def test_init_embedding_model_with_invalid_model(): |
| 134 | + embedding_model = "invalid_model" |
| 135 | + embedding_engine = "mock_engine" |
| 136 | + embedding_params = {"param1": "value1"} |
| 137 | + with pytest.raises(ValueError, match="Invalid embedding model: invalid_model"): |
| 138 | + init_embedding_model(embedding_model, embedding_engine, embedding_params) |
| 139 | + |
| 140 | + |
| 141 | +def test_encode_method(): |
| 142 | + embedding_model = "mock-embedding-small" |
| 143 | + embedding_engine = "mock_engine" |
| 144 | + model = init_embedding_model(embedding_model, embedding_engine) |
| 145 | + assert isinstance(model, MockEmbeddingModel) |
| 146 | + documents = ["doc1", "doc2", "doc3"] |
| 147 | + embeddings = model.encode(documents) |
| 148 | + assert len(embeddings) == len(documents) |
| 149 | + assert len(embeddings[0]) == model.embedding_size |
| 150 | + |
| 151 | + |
| 152 | +@pytest.mark.asyncio |
| 153 | +async def test_encode_async_method(): |
| 154 | + embedding_model = "mock-embedding-large" |
| 155 | + embedding_engine = "mock_engine" |
| 156 | + model = init_embedding_model(embedding_model, embedding_engine) |
| 157 | + assert isinstance(model, MockEmbeddingModel) |
| 158 | + documents = ["doc1", "doc2", "doc3"] |
| 159 | + embeddings = await model.encode_async(documents) |
| 160 | + assert len(embeddings) == len(documents) |
| 161 | + assert len(embeddings[0]) == model.embedding_size |
0 commit comments