-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
melgan.py
340 lines (291 loc) · 15.2 KB
/
melgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
import torch
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf, open_dict
from nemo.collections.tts.helpers.helpers import get_mask_from_lengths, plot_spectrogram_to_numpy
from nemo.collections.tts.models.base import Vocoder
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import AudioSignal, MelSpectrogramType
from nemo.core.neural_types.neural_type import NeuralType
from nemo.core.optim.lr_scheduler import CosineAnnealing
from nemo.utils import logging
from nemo.utils.decorators import deprecated
@deprecated(version="1.8", explanation="MelGanModel will be removed. Use HifiGanModel instead.")
class MelGanModel(Vocoder):
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
"""NeMo Model that implement Full-band MelGAN as described in https://arxiv.org/abs/2005.05106
"""
if isinstance(cfg, dict):
cfg = OmegaConf.create(cfg)
super().__init__(cfg=cfg, trainer=trainer)
self.audio_to_melspec_precessor = instantiate(self._cfg.preprocessor)
self.generator = instantiate(self._cfg.generator)
if "discriminator" in self._cfg:
self.discriminator = instantiate(self._cfg.discriminator)
self.loss = instantiate(self._cfg.loss)
self.mse_loss = torch.nn.MSELoss() # Used for LSE GAN loss
self.start_training_disc = False
self.logged_real_samples = False
self.sample_rate = self._cfg.preprocessor.sample_rate
def configure_optimizers(self):
opt1 = torch.optim.Adam(self.discriminator.parameters(), lr=1e-3, eps=1e-07, amsgrad=True)
opt2 = torch.optim.Adam(self.generator.parameters(), lr=1e-3, eps=1e-07, amsgrad=True)
num_procs = self._trainer.num_gpus * self._trainer.num_nodes
num_samples = len(self._train_dl.dataset)
batch_size = self._train_dl.batch_size
iter_per_epoch = np.ceil(num_samples / (num_procs * batch_size))
max_steps = iter_per_epoch * self._trainer.max_epochs
logging.info(f"MAX STEPS: {max_steps}")
sch1 = CosineAnnealing(
opt1, max_steps=max_steps, min_lr=1e-5, warmup_steps=np.ceil(0.2 * max_steps)
) # Use warmup to delay start
sch1_dict = {
'scheduler': sch1,
'interval': 'step',
}
sch2 = CosineAnnealing(opt2, max_steps=max_steps, min_lr=1e-5)
sch2_dict = {
'scheduler': sch2,
'interval': 'step',
}
return [opt1, opt2], [sch1_dict, sch2_dict]
@property
def input_types(self):
return {
"spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
}
@property
def output_types(self):
return {
"audio": NeuralType(('B', 'S', 'T'), AudioSignal(self.sample_rate)),
}
@typecheck()
def forward(self, *, spec):
"""
Runs the generator, for inputs and outputs see input_types, and output_types
"""
return self.generator(spec=spec)
@typecheck(output_types={"audio": NeuralType(('B', 'T'), AudioSignal())})
def convert_spectrogram_to_audio(self, spec: 'torch.tensor') -> 'torch.tensor':
return self(spec=spec).squeeze(1)
def training_step(self, batch, batch_idx, optimizer_idx):
audio, audio_len = batch
spec, _ = self.audio_to_melspec_precessor(audio, audio_len)
audio_pred = self(spec=spec)
# TODO: Lightning has a bug in 1.1.0, just always log something as a workaround
# https://github.com/PyTorchLightning/pytorch-lightning/issues/5063
self.log("Dummy", 0.0, logger=False)
# train discriminator
if optimizer_idx == 0 and self.start_training_disc:
fake_score = self.discriminator(x=audio_pred.detach())[0]
real_score = self.discriminator(x=audio.unsqueeze(1))[0]
loss_disc_real = [0] * len(fake_score)
loss_disc_fake = [0] * len(fake_score)
for i, _ in enumerate(fake_score):
loss_disc_real[i] += self.mse_loss(real_score[i], real_score[i].new_ones(real_score[i].size()))
loss_disc_fake[i] += torch.mean(fake_score[i] ** 2)
sum_loss_dis = sum(loss_disc_real) + sum(loss_disc_fake)
sum_loss_dis /= len(fake_score)
self.log("loss_discriminator", sum_loss_dis, prog_bar=True, sync_dist=True)
for i, _ in enumerate(fake_score):
self.log(f"loss_discriminator_real_{i}", loss_disc_real[i] / len(fake_score), sync_dist=True)
self.log(f"loss_discriminator_fake_{i}", loss_disc_fake[i] / len(fake_score), sync_dist=True)
return sum_loss_dis
# train generator
elif optimizer_idx == 1:
loss = 0
# full-band loss
sc_loss, mag_loss = self.loss(x=audio_pred.squeeze(1), y=audio)
loss_feat = sum(sc_loss) + sum(mag_loss)
loss_feat /= len(sc_loss)
loss += loss_feat
if self.start_training_disc:
fake_score = self.discriminator(x=audio_pred)[0]
loss_gan = [0] * len(fake_score)
for i, scale in enumerate(fake_score):
loss_gan[i] += self.mse_loss(scale, scale.new_ones(scale.size()))
sum_loss_gan = sum(loss_gan) / len(fake_score)
loss += sum_loss_gan
self.log("loss_generator", loss, sync_dist=True, prog_bar=True)
if self.start_training_disc:
self.log("loss_generator_gan_loss", sum_loss_gan, sync_dist=True)
for i, _ in enumerate(fake_score):
self.log(
f"loss_generator_gan_loss_{i}", loss_gan[i] / len(fake_score), sync_dist=True,
)
self.log("loss_generator_feat_loss", loss_feat, sync_dist=True)
self.log("loss_generator_feat_loss_fb_sc", sum(sc_loss) / len(sc_loss), sync_dist=True)
self.log("loss_generator_feat_loss_fb_mag", sum(mag_loss) / len(sc_loss), sync_dist=True)
for i, _ in enumerate(sc_loss):
self.log(f"loss_generator_feat_loss_fb_sc_{i}", sc_loss[i] / len(sc_loss), sync_dist=True)
self.log(f"loss_generator_feat_loss_fb_mag_{i}", mag_loss[i] / len(sc_loss), sync_dist=True)
return loss
return None
def validation_step(self, batch, batch_idx):
audio, audio_len = batch
with torch.no_grad():
spec, _ = self.audio_to_melspec_precessor(audio, audio_len)
audio_pred = self(spec=spec)
loss = 0
loss_dict = {}
spec_pred, _ = self.audio_to_melspec_precessor(audio_pred.squeeze(1), audio_len)
# Ensure that audio len is consistent between audio_pred and audio
# For SC Norm loss, we can just zero out
# For Mag L1 loss, we need to mask
if audio_pred.shape[-1] < audio.shape[-1]:
# prediction audio is less than audio, pad predicted audio to real audio
pad_amount = audio.shape[-1] - audio_pred.shape[-1]
audio_pred = torch.nn.functional.pad(audio_pred, (0, pad_amount), value=0.0)
else:
# prediction audio is larger than audio, slice predicted audio to real audio
audio_pred = audio_pred[:, :, : audio.shape[1]]
mask = ~get_mask_from_lengths(audio_len, max_len=torch.max(audio_len))
mask = mask.unsqueeze(1)
audio_pred.data.masked_fill_(mask, 0.0)
# full-band loss
sc_loss, mag_loss = self.loss(x=audio_pred.squeeze(1), y=audio, input_lengths=audio_len)
loss_feat = (sum(sc_loss) + sum(mag_loss)) / len(sc_loss)
loss_dict["sc_loss"] = sc_loss
loss_dict["mag_loss"] = mag_loss
loss += loss_feat
loss_dict["loss_feat"] = loss_feat
if self.start_training_disc:
fake_score = self.discriminator(x=audio_pred)[0]
loss_gen = [0] * len(fake_score)
for i, scale in enumerate(fake_score):
loss_gen[i] += self.mse_loss(scale, scale.new_ones(scale.size()))
loss_dict["gan_loss"] = loss_gen
loss += sum(loss_gen) / len(fake_score)
if not self.logged_real_samples:
loss_dict["spec"] = spec
loss_dict["audio"] = audio
loss_dict["audio_pred"] = audio_pred
loss_dict["spec_pred"] = spec_pred
loss_dict["loss"] = loss
return loss_dict
def validation_epoch_end(self, outputs):
# Los images and audio manually
if self.logger is not None and self.logger.experiment is not None:
if not self.logged_real_samples:
self.logger.experiment.add_image(
"val_mel_target",
plot_spectrogram_to_numpy(outputs[0]["spec"][0].data.cpu().numpy()),
self.global_step,
dataformats="HWC",
)
self.logger.experiment.add_audio(
"val_wav_target",
outputs[0]["audio"][0].data.cpu().numpy(),
self.global_step,
sample_rate=self.sample_rate,
)
self.logged_real_samples = True
self.logger.experiment.add_image(
"val_mel_predicted",
plot_spectrogram_to_numpy(outputs[0]["spec_pred"][0].data.cpu().numpy()),
self.global_step,
dataformats="HWC",
)
self.logger.experiment.add_audio(
"val_wav_predicted",
outputs[0]["audio_pred"][0].data.cpu().numpy(),
self.global_step,
sample_rate=self.sample_rate,
)
def get_stack(list_of_dict, key):
"""
Helper function to take a list of losses and reduce across all validation batches
"""
return_list = [[]] * len(list_of_dict[0][key])
for dict_ in list_of_dict:
list_of_losses = dict_[key]
for i, loss in enumerate(list_of_losses):
return_list[i].append(loss)
for i, loss in enumerate(return_list):
return_list[i] = torch.mean(torch.stack(loss))
return return_list
loss = torch.stack([x['loss'] for x in outputs]).mean()
self.log("val_loss", loss, sync_dist=True)
if self.start_training_disc:
gan_loss = get_stack(outputs, "gan_loss")
self.log("val_loss_gan_loss", sum(gan_loss) / len(gan_loss), sync_dist=True)
for i, _ in enumerate(gan_loss):
self.log(
f"val_loss_gan_loss_{i}", gan_loss[i] / len(gan_loss), sync_dist=True,
)
sc_loss = get_stack(outputs, "sc_loss")
mag_loss = get_stack(outputs, "mag_loss")
self.log("val_loss_feat_loss", torch.stack([x['loss_feat'] for x in outputs]).mean(), sync_dist=True)
self.log("val_loss_feat_loss_fb_sc", sum(sc_loss) / len(sc_loss), sync_dist=True)
self.log("val_loss_feat_loss_fb_mag", sum(mag_loss) / len(sc_loss), sync_dist=True)
for i, _ in enumerate(sc_loss):
self.log(f"val_loss_feat_loss_fb_sc_{i}", sc_loss[i] / len(sc_loss), sync_dist=True)
self.log(f"val_loss_feat_loss_fb_mag_{i}", mag_loss[i] / len(sc_loss), sync_dist=True)
def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
raise ValueError(f"No dataset for {name}")
if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
raise ValueError(f"No dataloder_params for {name}")
if shuffle_should_be:
if 'shuffle' not in cfg.dataloader_params:
logging.warning(
f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
"config. Manually setting to True"
)
with open_dict(cfg["dataloader_params"]):
cfg.dataloader_params.shuffle = True
elif not cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
elif not shuffle_should_be and cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")
dataset = instantiate(cfg.dataset)
return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)
def setup_training_data(self, cfg):
self._train_dl = self.__setup_dataloader_from_config(cfg)
def setup_validation_data(self, cfg):
self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")
def training_epoch_end(self, outputs):
# Do manual logginging of learning rate and epoch
if self.current_epoch % 100 == 0:
lrs = []
for scheduler in self._trainer.lr_schedulers:
param_groups = scheduler['scheduler'].optimizer.param_groups
lrs.append(param_groups[0]['lr'])
self.logger.experiment.add_scalar("lr-Adam", lrs[0], self.global_step)
self.logger.experiment.add_scalar("lr-Adam-1", lrs[1], self.global_step)
self.logger.experiment.add_scalar("epoch", self.current_epoch, self.global_step)
# Start training discriminator after 20% of training
if self.current_epoch >= np.ceil(0.2 * self._trainer.max_epochs):
logging.info(f"MelGAN discriminator was enabled at epoch: {self.current_epoch}")
self.start_training_disc = True
return super().training_epoch_end(outputs)
@classmethod
def list_available_models(cls) -> 'Optional[Dict[str, str]]':
"""
This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
Returns:
List of available pre-trained models.
"""
list_of_models = []
model = PretrainedModelInfo(
pretrained_model_name="tts_melgan",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_melgan/versions/1.0.0/files/tts_melgan.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz, and has been tested on generating female English voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
return list_of_models