-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
audio_to_label.py
1420 lines (1213 loc) · 63.6 KB
/
audio_to_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
from typing import Dict, List, Optional, Union
import torch
import webdataset as wds
from nemo.collections.asr.data.audio_to_text import cache_datastore_manifests, expand_sharded_filepaths
from nemo.collections.asr.parts.preprocessing.features import WaveformFeaturizer
from nemo.collections.asr.parts.preprocessing.segment import available_formats as valid_sf_formats
from nemo.collections.common.parts.preprocessing import collections
from nemo.core.classes import Dataset, IterableDataset
from nemo.core.neural_types import AudioSignal, LabelsType, LengthsType, NeuralType, RegressionValuesType
from nemo.utils import logging
from nemo.utils.distributed import webdataset_split_by_workers
# List of valid file formats (prioritized by order of importance)
VALID_FILE_FORMATS = ';'.join(['wav', 'mp3', 'flac', 'opus'] + [fmt.lower() for fmt in valid_sf_formats.keys()])
def repeat_signal(signal: torch.Tensor, sig_len: int, required_length: int) -> torch.Tensor:
"""repeat signal to make short signal to have required_length
Args:
signal (Tensor): input signal
sig_len (int): length of input signal
required_length (int): length of generated signal
Returns:
signal (Tensor): generated signal of required_length by repeating itself.
"""
sub: torch.Tensor = torch.tensor([])
repeat = int(required_length // sig_len)
rem = int(required_length % sig_len)
sub: torch.Tensor = torch.tensor([])
rep_sig: torch.Tensor = torch.cat(repeat * [signal])
if rem > 0:
sub = signal[-rem:]
signal = torch.cat((rep_sig, sub))
else:
signal = rep_sig
return signal
def normalize(signal):
"""normalize signal
Args:
signal(FloatTensor): signal to be normalized.
"""
signal_minusmean = signal - signal.mean()
return signal_minusmean / signal_minusmean.abs().max()
def count_occurence(manifest_file_id):
"""Count number of wav files in Dict manifest_file_id. Use for _TarredAudioToLabelDataset.
Args:
manifest_file_id (Dict): Dict of files and their corresponding id. {'A-sub0' : 1, ..., 'S-sub10':100}
Returns:
count (Dict): Dict of wav files {'A' : 2, ..., 'S':10}
"""
count = dict()
for i in manifest_file_id:
audio_filename = i.split("-sub")[0]
count[audio_filename] = count.get(audio_filename, 0) + 1
return count
def _speech_collate_fn(batch, pad_id):
"""collate batch of audio sig, audio len, tokens, tokens len
Args:
batch (Optional[FloatTensor], Optional[LongTensor], LongTensor,
LongTensor): A tuple of tuples of signal, signal lengths,
encoded tokens, and encoded tokens length. This collate func
assumes the signals are 1d torch tensors (i.e. mono audio).
"""
_, audio_lengths, _, tokens_lengths = zip(*batch)
max_audio_len = 0
has_audio = audio_lengths[0] is not None
if has_audio:
max_audio_len = max(audio_lengths).item()
max_tokens_len = max(tokens_lengths).item()
audio_signal, tokens = [], []
for sig, sig_len, tokens_i, tokens_i_len in batch:
if has_audio:
sig_len = sig_len.item()
if sig_len < max_audio_len:
pad = (0, max_audio_len - sig_len)
sig = torch.nn.functional.pad(sig, pad)
audio_signal.append(sig)
tokens_i_len = tokens_i_len.item()
if tokens_i_len < max_tokens_len:
pad = (0, max_tokens_len - tokens_i_len)
tokens_i = torch.nn.functional.pad(tokens_i, pad, value=pad_id)
tokens.append(tokens_i)
if has_audio:
audio_signal = torch.stack(audio_signal)
audio_lengths = torch.stack(audio_lengths)
else:
audio_signal, audio_lengths = None, None
tokens = torch.stack(tokens)
tokens_lengths = torch.stack(tokens_lengths)
return audio_signal, audio_lengths, tokens, tokens_lengths
def _fixed_seq_collate_fn(self, batch):
"""collate batch of audio sig, audio len, tokens, tokens len
Args:
batch (Optional[FloatTensor], Optional[LongTensor], LongTensor,
LongTensor): A tuple of tuples of signal, signal lengths,
encoded tokens, and encoded tokens length. This collate func
assumes the signals are 1d torch tensors (i.e. mono audio).
"""
_, audio_lengths, _, tokens_lengths = zip(*batch)
has_audio = audio_lengths[0] is not None
fixed_length = int(max(audio_lengths))
audio_signal, tokens, new_audio_lengths = [], [], []
for sig, sig_len, tokens_i, _ in batch:
if has_audio:
sig_len = sig_len.item()
chunck_len = sig_len - fixed_length
if chunck_len < 0:
repeat = fixed_length // sig_len
rem = fixed_length % sig_len
sub = sig[-rem:] if rem > 0 else torch.tensor([])
rep_sig = torch.cat(repeat * [sig])
sig = torch.cat((rep_sig, sub))
new_audio_lengths.append(torch.tensor(fixed_length))
audio_signal.append(sig)
tokens.append(tokens_i)
if has_audio:
audio_signal = torch.stack(audio_signal)
audio_lengths = torch.stack(new_audio_lengths)
else:
audio_signal, audio_lengths = None, None
tokens = torch.stack(tokens)
tokens_lengths = torch.stack(tokens_lengths)
return audio_signal, audio_lengths, tokens, tokens_lengths
def _vad_frame_seq_collate_fn(self, batch):
"""collate batch of audio sig, audio len, tokens, tokens len
Args:
batch (Optional[FloatTensor], Optional[LongTensor], LongTensor,
LongTensor): A tuple of tuples of signal, signal lengths,
encoded tokens, and encoded tokens length. This collate func
assumes the signals are 1d torch tensors (i.e. mono audio).
batch size equals to 1.
"""
slice_length = int(self.featurizer.sample_rate * self.window_length_in_sec)
_, audio_lengths, _, tokens_lengths = zip(*batch)
slice_length = int(min(slice_length, max(audio_lengths)))
shift = int(self.featurizer.sample_rate * self.shift_length_in_sec)
has_audio = audio_lengths[0] is not None
audio_signal, num_slices, tokens, audio_lengths = [], [], [], []
append_len_start = slice_length // 2
append_len_end = slice_length - slice_length // 2
for sig, sig_len, tokens_i, _ in batch:
if self.normalize_audio:
sig = normalize(sig)
start = torch.zeros(append_len_start)
end = torch.zeros(append_len_end)
sig = torch.cat((start, sig, end))
sig_len += slice_length
if has_audio:
slices = torch.div(sig_len - slice_length, shift, rounding_mode='trunc')
for slice_id in range(slices):
start_idx = slice_id * shift
end_idx = start_idx + slice_length
signal = sig[start_idx:end_idx]
audio_signal.append(signal)
num_slices.append(slices)
tokens.extend([tokens_i] * slices)
audio_lengths.extend([slice_length] * slices)
if has_audio:
audio_signal = torch.stack(audio_signal)
audio_lengths = torch.tensor(audio_lengths)
else:
audio_signal, audio_lengths = None, None
tokens = torch.stack(tokens)
tokens_lengths = torch.tensor(num_slices)
return audio_signal, audio_lengths, tokens, tokens_lengths
class _AudioLabelDataset(Dataset):
"""
Dataset that loads tensors via a json file containing paths to audio files,
labels, and durations and offsets(in seconds). Each new line is a
different sample. Example below:
and their target labels. JSON files should be of the following format::
{"audio_filepath": "/path/to/audio_wav_0.wav", "duration": time_in_sec_0, "label": \
target_label_0, "offset": offset_in_sec_0}
...
{"audio_filepath": "/path/to/audio_wav_n.wav", "duration": time_in_sec_n, "label": \
target_label_n, "offset": offset_in_sec_n}
Args:
manifest_filepath (Union[str, List[str]]): Dataset parameter. Path to JSON containing data.
labels (list): Dataset parameter. List of target classes that can be output by the speaker recognition model.
featurizer
min_duration (float): Dataset parameter. All training files which have a duration less than min_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to 0.1.
max_duration (float): Dataset parameter.
All training files which have a duration more than max_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to None.
trim (bool): Whether to use trim silence from beginning and end of audio signal using librosa.effects.trim().
Defaults to False.
channel selector (Union[str, int, List[int]]): string denoting the downmix mode, an integer denoting the channel to be selected, or an iterable
of integers denoting a subset of channels. Channel selector is using zero-based indexing.
If set to `None`, the original signal will be used.
"""
@property
def output_types(self) -> Optional[Dict[str, NeuralType]]:
"""Returns definitions of module output ports."""
output_types = {
'audio_signal': NeuralType(
('B', 'T'),
(
AudioSignal(freq=self._sample_rate)
if self is not None and hasattr(self, '_sample_rate')
else AudioSignal()
),
),
'a_sig_length': NeuralType(tuple('B'), LengthsType()),
}
if self.is_regression_task:
output_types.update(
{
'targets': NeuralType(tuple('B'), RegressionValuesType()),
'targets_length': NeuralType(tuple('B'), LengthsType()),
}
)
else:
output_types.update(
{
'label': NeuralType(tuple('B'), LabelsType()),
'label_length': NeuralType(tuple('B'), LengthsType()),
}
)
return output_types
def __init__(
self,
*,
manifest_filepath: Union[str, List[str]],
labels: List[str],
featurizer,
min_duration: Optional[float] = 0.1,
max_duration: Optional[float] = None,
trim: bool = False,
channel_selector: Union[str, int, List[int]] = None,
is_regression_task: bool = False,
cal_labels_occurrence: Optional[bool] = False,
):
super().__init__()
if isinstance(manifest_filepath, str):
manifest_filepath = manifest_filepath.split(',')
cache_datastore_manifests(manifest_filepaths=manifest_filepath, cache_audio=True)
self.collection = collections.ASRSpeechLabel(
manifests_files=manifest_filepath,
min_duration=min_duration,
max_duration=max_duration,
is_regression_task=is_regression_task,
cal_labels_occurrence=cal_labels_occurrence,
)
self.featurizer = featurizer
self.trim = trim
self.channel_selector = channel_selector
self.is_regression_task = is_regression_task
if not is_regression_task:
self.labels = labels if labels else self.collection.uniq_labels
self.num_classes = len(self.labels) if self.labels is not None else 1
self.label2id, self.id2label = {}, {}
self.id2occurrence, self.labels_occurrence = {}, []
for label_id, label in enumerate(self.labels):
self.label2id[label] = label_id
self.id2label[label_id] = label
if cal_labels_occurrence:
self.id2occurrence[label_id] = self.collection.labels_occurrence[label]
if cal_labels_occurrence:
self.labels_occurrence = [self.id2occurrence[k] for k in sorted(self.id2occurrence)]
for idx in range(len(self.labels[:5])):
logging.debug(" label id {} and its mapped label {}".format(idx, self.id2label[idx]))
else:
self.labels = []
self.num_classes = 1
def __len__(self):
return len(self.collection)
def __getitem__(self, index):
sample = self.collection[index]
offset = sample.offset
if offset is None:
offset = 0
features = self.featurizer.process(
sample.audio_file,
offset=offset,
duration=sample.duration,
trim=self.trim,
channel_selector=self.channel_selector,
)
f, fl = features, torch.tensor(features.shape[0]).long()
if not self.is_regression_task:
t = torch.tensor(self.label2id[sample.label]).long()
else:
t = torch.tensor(sample.label).float()
tl = torch.tensor(1).long() # For compatibility with collate_fn used later
return f, fl, t, tl
# Ported from https://github.com/NVIDIA/OpenSeq2Seq/blob/master/open_seq2seq/data/speech2text/speech_commands.py
class AudioToClassificationLabelDataset(_AudioLabelDataset):
"""
Dataset that loads tensors via a json file containing paths to audio
files, command class, and durations (in seconds). Each new line is a
different sample. Example below:
{"audio_filepath": "/path/to/audio_wav_0.wav", "duration": time_in_sec_0, "label": \
target_label_0, "offset": offset_in_sec_0}
...
{"audio_filepath": "/path/to/audio_wav_n.wav", "duration": time_in_sec_n, "label": \
target_label_n, "offset": offset_in_sec_n}
Args:
manifest_filepath (Union[str, List[str]]): Path to manifest json as described above. Can
be comma-separated paths.
labels (Optional[list]): String containing all the possible labels to map to
if None then automatically picks from ASRSpeechLabel collection.
featurizer: Initialized featurizer class that converts paths of
audio to feature tensors
max_duration: If audio exceeds this length, do not include in dataset
min_duration: If audio is less than this length, do not include
in dataset
trim: Boolean flag whether to trim the audio
"""
def _collate_fn(self, batch):
return _speech_collate_fn(batch, pad_id=0)
class AudioToSpeechLabelDataset(_AudioLabelDataset):
"""
Dataset that loads tensors via a json file containing paths to audio
files, command class, and durations (in seconds). Each new line is a
different sample. Example below:
{"audio_filepath": "/path/to/audio_wav_0.wav", "duration": time_in_sec_0, "label": \
target_label_0, "offset": offset_in_sec_0}
...
{"audio_filepath": "/path/to/audio_wav_n.wav", "duration": time_in_sec_n, "label": \
target_label_n, "offset": offset_in_sec_n}
Args:
manifest_filepath (Union[str, List[str]]): Path to manifest json as described above. Can
be comma-separated paths.
labels (Optional[list]): String containing all the possible labels to map to
if None then automatically picks from ASRSpeechLabel collection.
min_duration (float): Dataset parameter.
All training files which have a duration less than min_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to 0.1.
max_duration (float): Dataset parameter.
All training files which have a duration more than max_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to None.
trim (bool): Whether to use trim silence from beginning and end
of audio signal using librosa.effects.trim().
Defaults to False.
channel selector (Union[str, int, List[int]]): string denoting the downmix mode, an integer denoting the channel to be selected, or an iterable
of integers denoting a subset of channels. Channel selector is using zero-based indexing.
If set to `None`, the original signal will be used.
window_length_in_sec (float): length of window/slice (in seconds)
Use this for speaker recognition and VAD tasks.
shift_length_in_sec (float): amount of shift of window for generating the frame for VAD task in a batch
Use this for VAD task during inference.
normalize_audio (bool): Whether to normalize audio signal.
Defaults to False.
is_regression_task (bool): Whether the dataset is for a regression task instead of classification.
Defaults to False.
cal_labels_occurrence (bool): Whether to calculate occurrence of labels
Defaults to False.
"""
def __init__(
self,
*,
manifest_filepath: Union[str, List[str]],
labels: List[str],
featurizer,
min_duration: Optional[float] = 0.1,
max_duration: Optional[float] = None,
trim: bool = False,
channel_selector: Optional[Union[str, int, List[int]]] = None,
window_length_in_sec: Optional[float] = 8,
shift_length_in_sec: Optional[float] = 1,
normalize_audio: bool = False,
is_regression_task: bool = False,
cal_labels_occurrence: Optional[bool] = False,
):
self.window_length_in_sec = window_length_in_sec
self.shift_length_in_sec = shift_length_in_sec
self.normalize_audio = normalize_audio
logging.debug("Window/slice length considered for collate func is {}".format(self.window_length_in_sec))
logging.debug("Shift length considered for collate func is {}".format(self.shift_length_in_sec))
super().__init__(
manifest_filepath=manifest_filepath,
labels=labels,
featurizer=featurizer,
min_duration=min_duration,
max_duration=max_duration,
trim=trim,
channel_selector=channel_selector,
is_regression_task=is_regression_task,
cal_labels_occurrence=cal_labels_occurrence,
)
def fixed_seq_collate_fn(self, batch):
return _fixed_seq_collate_fn(self, batch)
def vad_frame_seq_collate_fn(self, batch):
return _vad_frame_seq_collate_fn(self, batch)
class _TarredAudioLabelDataset(IterableDataset):
"""
A similar Dataset to the AudioLabelDataSet, but which loads tarred audio files.
Accepts a single comma-separated JSON manifest file (in the same style as for the AudioToSpeechLabelDataset),
as well as the path(s) to the tarball(s) containing the wav files. Each line of the manifest should
contain the information for one audio file, including at least the label and name of the audio
file within the tarball.
Valid formats for the audio_tar_filepaths argument include:
(1) a single string that can be brace-expanded, e.g. 'path/to/audio.tar' or 'path/to/audio_{1..100}.tar.gz', or
(2) a list of file paths that will not be brace-expanded, e.g. ['audio_1.tar', 'audio_2.tar', ...].
Note: For brace expansion in (1), there may be cases where `{x..y}` syntax cannot be used due to shell interference.
This occurs most commonly inside SLURM scripts. Therefore we provide a few equivalent replacements.
Supported opening braces - { <=> (, [, < and the special tag _OP_.
Supported closing braces - } <=> ), ], > and the special tag _CL_.
For SLURM based tasks, we suggest the use of the special tags for ease of use.
See the documentation for more information about accepted data and input formats.
If using multiple processes the number of shards should be divisible by the number of workers to ensure an
even split among workers. If it is not divisible, logging will give a warning but training will proceed.
In addition, if using mutiprocessing, each shard MUST HAVE THE SAME NUMBER OF ENTRIES after filtering
is applied. We currently do not check for this, but your program may hang if the shards are uneven!
Notice that a few arguments are different from the AudioLabelDataSet; for example, shuffle (bool) has been
replaced by shuffle_n (int).
Additionally, please note that the len() of this DataLayer is assumed to be the length of the manifest
after filtering. An incorrect manifest length may lead to some DataLoader issues down the line.
Args:
audio_tar_filepaths: Either a list of audio tarball filepaths, or a
string (can be brace-expandable).
manifest_filepath (str): Path to the manifest.
labels (list): Dataset parameter.
List of target classes that can be output by the speaker recognition model.
featurizer
shuffle_n (int): How many samples to look ahead and load to be shuffled.
See WebDataset documentation for more details.
Defaults to 0.
min_duration (float): Dataset parameter.
All training files which have a duration less than min_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to 0.1.
max_duration (float): Dataset parameter.
All training files which have a duration more than max_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to None.
trim(bool): Whether to use trim silence from beginning and end
of audio signal using librosa.effects.trim().
Defaults to False.
window_length_in_sec (float): length of slice/window (in seconds) # Pass this only for speaker recognition and VAD task
shift_length_in_sec (float): amount of shift of window for generating the frame for VAD task. in a batch # Pass this only for VAD task during inference.
normalize_audio (bool): Whether to normalize audio signal. Defaults to False.
shard_strategy (str): Tarred dataset shard distribution strategy chosen as a str value during ddp.
- `scatter`: The default shard strategy applied by WebDataset, where each node gets
a unique set of shards, which are permanently pre-allocated and never changed at runtime.
- `replicate`: Optional shard strategy, where each node gets all of the set of shards
available in the tarred dataset, which are permanently pre-allocated and never changed at runtime.
The benefit of replication is that it allows each node to sample data points from the entire
dataset independently of other nodes, and reduces dependence on the value of `shuffle_n`.
.. warning::
Replicated strategy allows every node to sample the entire set of available tarfiles,
and therefore more than one node may sample the same tarfile, and even sample the same
data points! As such, there is no assured guarantee that all samples in the dataset will be
sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific
occasions (when the number of shards is not divisible with ``world_size``), will not sample
the entire dataset. For these reasons it is not advisable to use tarred datasets as validation
or test datasets.
global_rank (int): Worker rank, used for partitioning shards. Defaults to 0.
world_size (int): Total number of processes, used for partitioning shards. Defaults to 0.
is_regression_task (bool): Whether it is a regression task. Defualts to False.
"""
def __init__(
self,
*,
audio_tar_filepaths: Union[str, List[str]],
manifest_filepath: Union[str, List[str]],
labels: List[str],
featurizer,
shuffle_n: int = 0,
min_duration: Optional[float] = 0.1,
max_duration: Optional[float] = None,
trim: bool = False,
shard_strategy: str = "scatter",
global_rank: int = 0,
world_size: int = 0,
is_regression_task: bool = False,
):
cache_datastore_manifests(manifest_filepaths=manifest_filepath)
self.collection = collections.ASRSpeechLabel(
manifests_files=manifest_filepath,
min_duration=min_duration,
max_duration=max_duration,
index_by_file_id=True, # Must set this so the manifest lines can be indexed by file ID
)
self.file_occurence = count_occurence(self.collection.mapping)
self.featurizer = featurizer
self.trim = trim
self.labels = labels if labels else self.collection.uniq_labels
self.num_classes = len(self.labels)
self.label2id, self.id2label = {}, {}
for label_id, label in enumerate(self.labels):
self.label2id[label] = label_id
self.id2label[label_id] = label
for idx in range(len(self.labels[:5])):
logging.debug(" label id {} and its mapped label {}".format(idx, self.id2label[idx]))
audio_tar_filepaths = expand_sharded_filepaths(
sharded_filepaths=audio_tar_filepaths,
shard_strategy=shard_strategy,
world_size=world_size,
global_rank=global_rank,
)
# Put together WebDataset
self._dataset = wds.DataPipeline(
wds.SimpleShardList(urls=audio_tar_filepaths),
webdataset_split_by_workers,
wds.shuffle(shuffle_n),
wds.tarfile_to_samples(),
wds.rename(audio=VALID_FILE_FORMATS, key='__key__'),
wds.to_tuple('audio', 'key'),
self._filter,
wds.map(self._build_sample),
)
def _filter(self, iterator):
"""This function is used to remove samples that have been filtered out by ASRSpeechLabel already.
Otherwise, we would get a KeyError as _build_sample attempts to find the manifest entry for a sample
that was filtered out (e.g. for duration).
Note that if using multi-GPU training, filtering may lead to an imbalance in samples in each shard,
which may make your code hang as one process will finish before the other.
"""
class TarredAudioFilter:
def __init__(self, collection, file_occurence):
self.iterator = iterator
self.collection = collection
self.file_occurence = file_occurence
self._iterable = self._internal_generator()
def __iter__(self):
self._iterable = self._internal_generator()
return self
def __next__(self):
try:
values = next(self._iterable)
except StopIteration:
# reset generator
self._iterable = self._internal_generator()
values = next(self._iterable)
return values
def _internal_generator(self):
"""
WebDataset requires an Iterator, but we require an iterable that yields 1-or-more
values per value inside self.iterator.
Therefore wrap the iterator with a generator function that will yield 1-or-more
values per sample in the iterator.
"""
for _, tup in enumerate(self.iterator):
audio_bytes, audio_filename = tup
file_id, _ = os.path.splitext(os.path.basename(audio_filename))
if audio_filename in self.file_occurence:
for j in range(0, self.file_occurence[file_id]):
if j == 0:
audio_filename = file_id
else:
audio_filename = file_id + "-sub" + str(j)
yield audio_bytes, audio_filename
return TarredAudioFilter(self.collection, self.file_occurence)
def _build_sample(self, tup):
"""Builds the training sample by combining the data from the WebDataset with the manifest info."""
audio_bytes, audio_filename = tup
# Grab manifest entry from self.collection
file_id, _ = os.path.splitext(os.path.basename(audio_filename))
manifest_idx = self.collection.mapping[file_id]
manifest_entry = self.collection[manifest_idx]
offset = manifest_entry.offset
if offset is None:
offset = 0
# Convert audio bytes to IO stream for processing (for SoundFile to read)
audio_filestream = io.BytesIO(audio_bytes)
features = self.featurizer.process(
audio_filestream,
offset=offset,
duration=manifest_entry.duration,
trim=self.trim,
)
audio_filestream.close()
# Audio features
f, fl = features, torch.tensor(features.shape[0]).long()
t = self.label2id[manifest_entry.label]
tl = 1 # For compatibility with collate_fn used later
return f, fl, torch.tensor(t).long(), torch.tensor(tl).long()
def __iter__(self):
return self._dataset.__iter__()
def __len__(self):
return len(self.collection)
class TarredAudioToClassificationLabelDataset(_TarredAudioLabelDataset):
"""
A similar Dataset to the AudioToClassificationLabelDataset, but which loads tarred audio files.
Accepts a single comma-separated JSON manifest file (in the same style as for the AudioToClassificationLabelDataset),
as well as the path(s) to the tarball(s) containing the wav files. Each line of the manifest should
contain the information for one audio file, including at least the transcript and name of the audio
file within the tarball.
Valid formats for the audio_tar_filepaths argument include:
(1) a single string that can be brace-expanded, e.g. 'path/to/audio.tar' or 'path/to/audio_{1..100}.tar.gz', or
(2) a list of file paths that will not be brace-expanded, e.g. ['audio_1.tar', 'audio_2.tar', ...].
See the WebDataset documentation for more information about accepted data and input formats.
If using multiple processes the number of shards should be divisible by the number of workers to ensure an
even split among workers. If it is not divisible, logging will give a warning but training will proceed.
In addition, if using mutiprocessing, each shard MUST HAVE THE SAME NUMBER OF ENTRIES after filtering
is applied. We currently do not check for this, but your program may hang if the shards are uneven!
Notice that a few arguments are different from the AudioToBPEDataset; for example, shuffle (bool) has been
replaced by shuffle_n (int).
Additionally, please note that the len() of this DataLayer is assumed to be the length of the manifest
after filtering. An incorrect manifest length may lead to some DataLoader issues down the line.
Args:
audio_tar_filepaths: Either a list of audio tarball filepaths, or a
string (can be brace-expandable).
manifest_filepath (str): Path to the manifest.
labels (list): Dataset parameter.
List of target classes that can be output by the speaker recognition model.
featurizer
shuffle_n (int): How many samples to look ahead and load to be shuffled.
See WebDataset documentation for more details.
Defaults to 0.
min_duration (float): Dataset parameter.
All training files which have a duration less than min_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to 0.1.
max_duration (float): Dataset parameter.
All training files which have a duration more than max_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to None.
trim(bool): Whether to use trim silence from beginning and end
of audio signal using librosa.effects.trim().
Defaults to False.
shard_strategy (str): Tarred dataset shard distribution strategy chosen as a str value during ddp.
- `scatter`: The default shard strategy applied by WebDataset, where each node gets
a unique set of shards, which are permanently pre-allocated and never changed at runtime.
- `replicate`: Optional shard strategy, where each node gets all of the set of shards
available in the tarred dataset, which are permanently pre-allocated and never changed at runtime.
The benefit of replication is that it allows each node to sample data points from the entire
dataset independently of other nodes, and reduces dependence on value of `shuffle_n`.
.. warning::
Replicated strategy allows every node to sample the entire set of available tarfiles,
and therefore more than one node may sample the same tarfile, and even sample the same
data points! As such, there is no assured guarantee that all samples in the dataset will be
sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific
occasions (when the number of shards is not divisible with ``world_size``), will not sample
the entire dataset. For these reasons it is not advisable to use tarred datasets as validation
or test datasets.
global_rank (int): Worker rank, used for partitioning shards. Defaults to 0.
world_size (int): Total number of processes, used for partitioning shards. Defaults to 0.
is_regression_task (bool): Whether it is a regression task. Defualts to False.
"""
def _collate_fn(self, batch):
return _speech_collate_fn(batch, pad_id=0)
class TarredAudioToSpeechLabelDataset(_TarredAudioLabelDataset):
"""
A similar Dataset to the AudioToSpeechLabelDataset, but which loads tarred audio files.
Accepts a single comma-separated JSON manifest file (in the same style as for the AudioToSpeechLabelDataset),
as well as the path(s) to the tarball(s) containing the wav files. Each line of the manifest should
contain the information for one audio file, including at least the transcript and name of the audio
file within the tarball.
Valid formats for the audio_tar_filepaths argument include:
(1) a single string that can be brace-expanded, e.g. 'path/to/audio.tar' or 'path/to/audio_{1..100}.tar.gz', or
(2) a list of file paths that will not be brace-expanded, e.g. ['audio_1.tar', 'audio_2.tar', ...].
See the WebDataset documentation for more information about accepted data and input formats.
If using multiple processes the number of shards should be divisible by the number of workers to ensure an
even split among workers. If it is not divisible, logging will give a warning but training will proceed.
In addition, if using mutiprocessing, each shard MUST HAVE THE SAME NUMBER OF ENTRIES after filtering
is applied. We currently do not check for this, but your program may hang if the shards are uneven!
Notice that a few arguments are different from the AudioToBPEDataset; for example, shuffle (bool) has been
replaced by shuffle_n (int).
Additionally, please note that the len() of this DataLayer is assumed to be the length of the manifest
after filtering. An incorrect manifest length may lead to some DataLoader issues down the line.
Args:
audio_tar_filepaths: Either a list of audio tarball filepaths, or a
string (can be brace-expandable).
manifest_filepath (str): Path to the manifest.
labels (list): Dataset parameter.
List of target classes that can be output by the speaker recognition model.
featurizer
shuffle_n (int): How many samples to look ahead and load to be shuffled.
See WebDataset documentation for more details.
Defaults to 0.
min_duration (float): Dataset parameter.
All training files which have a duration less than min_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to 0.1.
max_duration (float): Dataset parameter.
All training files which have a duration more than max_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to None.
trim(bool): Whether to use trim silence from beginning and end
of audio signal using librosa.effects.trim().
Defaults to False.
window_length_in_sec (float): time length of window/slice (in seconds) # Pass this only for speaker recognition and VAD task
shift_length_in_sec (float): amount of shift of window for generating the frame for VAD task. in a batch # Pass this only for VAD task during inference.
normalize_audio (bool): Whether to normalize audio signal. Defaults to False.
shard_strategy (str): Tarred dataset shard distribution strategy chosen as a str value during ddp.
- `scatter`: The default shard strategy applied by WebDataset, where each node gets
a unique set of shards, which are permanently pre-allocated and never changed at runtime.
- `replicate`: Optional shard strategy, where each node gets all of the set of shards
available in the tarred dataset, which are permanently pre-allocated and never changed at runtime.
The benefit of replication is that it allows each node to sample data points from the entire
dataset independently of other nodes, and reduces dependence on value of `shuffle_n`.
.. warning::
Replicated strategy allows every node to sample the entire set of available tarfiles,
and therefore more than one node may sample the same tarfile, and even sample the same
data points! As such, there is no assured guarantee that all samples in the dataset will be
sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific
occasions (when the number of shards is not divisible with ``world_size``), will not sample
the entire dataset. For these reasons it is not advisable to use tarred datasets as validation
or test datasets.
global_rank (int): Worker rank, used for partitioning shards. Defaults to 0.
world_size (int): Total number of processes, used for partitioning shards. Defaults to 0.
"""
def __init__(
self,
*,
audio_tar_filepaths: Union[str, List[str]],
manifest_filepath: Union[str, List[str]],
labels: List[str],
featurizer,
shuffle_n: int = 0,
min_duration: Optional[float] = 0.1,
max_duration: Optional[float] = None,
trim: bool = False,
window_length_in_sec: Optional[float] = 8,
shift_length_in_sec: Optional[float] = 1,
normalize_audio: bool = False,
shard_strategy: str = "scatter",
global_rank: int = 0,
world_size: int = 0,
):
logging.info("Window/slice length considered for collate func is {}".format(window_length_in_sec))
logging.info("Shift length considered for collate func is {}".format(shift_length_in_sec))
self.window_length_in_sec = window_length_in_sec
self.shift_length_in_sec = shift_length_in_sec
self.normalize_audio = normalize_audio
super().__init__(
audio_tar_filepaths=audio_tar_filepaths,
manifest_filepath=manifest_filepath,
labels=labels,
featurizer=featurizer,
shuffle_n=shuffle_n,
min_duration=min_duration,
max_duration=max_duration,
trim=trim,
shard_strategy=shard_strategy,
global_rank=global_rank,
world_size=world_size,
)
def fixed_seq_collate_fn(self, batch):
return _fixed_seq_collate_fn(self, batch)
def sliced_seq_collate_fn(self, batch):
raise NotImplementedError
def vad_frame_seq_collate_fn(self, batch):
return _vad_frame_seq_collate_fn(self, batch)
class AudioToMultiLabelDataset(Dataset):
"""
Dataset that loads a json file containing paths to audio files, durations (in seconds), and a sequence of labels.
Each new line is a different sample. Example below:
{"audio_filepath": "/path/to/audio_wav_0.wav", "duration": time_in_sec_0, "label": \
"0 1 1 0 1", "offset": offset_in_sec_0}
...
{"audio_filepath": "/path/to/audio_wav_n.wav", "duration": time_in_sec_n, "label": \
"0 1 0 0 1", "offset": offset_in_sec_n}
Args:
manifest_filepath (Union[str, List[str]]): Path to manifest json as described above. Can
be comma-separated paths.
labels (Optional[list]): String containing all the possible labels to map to
if None then automatically picks from ASRSpeechLabel collection.
min_duration (float): Dataset parameter.
All training files which have a duration less than min_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to 0.1.
max_duration (float): Dataset parameter.
All training files which have a duration more than max_duration
are dropped. Note: Duration is read from the manifest JSON.
Defaults to None.
trim_silence (bool): Whether to use trim silence from beginning and end
of audio signal using librosa.effects.trim().
Defaults to False.
channel selector (Union[str, int, List[int]]): string denoting the downmix mode, an integer denoting the channel to be selected, or an iterable
of integers denoting a subset of channels. Channel selector is using zero-based indexing.
If set to `None`, the original signal will be used.
window_length_in_sec (float): length of window/slice (in seconds)
Use this for speaker recognition and VAD tasks.
shift_length_in_sec (float): amount of shift of window for generating the frame for VAD task in a batch
Use this for VAD task during inference.
normalize_audio (bool): Whether to normalize audio signal.
Defaults to False.
is_regression_task (bool): Whether the dataset is for a regression task instead of classification.
Defaults to False.
cal_labels_occurrence (bool): Whether to calculate occurrence of labels
Defaults to False.
delimiter (Optional[str]): Delimiter to use when splitting the label string, default to None.
normalize_audio_db (Optional[float]): normalize audio signal to a target db, default to None.
"""
@property
def output_types(self) -> Optional[Dict[str, NeuralType]]:
"""Returns definitions of module output ports."""
output_types = {
'audio_signal': NeuralType(
('B', 'T'),
(
AudioSignal(freq=self._sample_rate)
if self is not None and hasattr(self, '_sample_rate')
else AudioSignal()
),
),
'a_sig_length': NeuralType(tuple('B'), LengthsType()),
}
if self.is_regression_task:
output_types.update(
{
'targets': NeuralType(tuple('B, T'), RegressionValuesType()),
'targets_length': NeuralType(tuple('B'), LengthsType()),
}
)
else:
output_types.update(
{
'label': NeuralType(('B', 'T'), LabelsType()),
'label_length': NeuralType(tuple('B'), LengthsType()),
}
)
return output_types
def __init__(
self,
*,
manifest_filepath: Union[str, List[str]],
sample_rate: int,
labels: Optional[List[str]] = None,
int_values: bool = False,
augmentor: 'nemo.collections.asr.parts.perturb.AudioAugmentor' = None,
min_duration: Optional[float] = 0.1,
max_duration: Optional[float] = None,
trim_silence: bool = False,
channel_selector: Optional[Union[str, int, List[int]]] = None,
is_regression_task: bool = False,
cal_labels_occurrence: Optional[bool] = False,
delimiter: Optional[str] = None,
normalize_audio_db: Optional[float] = None,
):
super().__init__()
if isinstance(manifest_filepath, str):
manifest_filepath = manifest_filepath.split(',')
self.delimiter = delimiter
self.normalize_audio_db = normalize_audio_db
self.collection = collections.ASRSpeechLabel(
manifests_files=manifest_filepath,
min_duration=min_duration,
max_duration=max_duration,
is_regression_task=is_regression_task,
cal_labels_occurrence=cal_labels_occurrence,
delimiter=delimiter,
)
self.featurizer = WaveformFeaturizer(sample_rate=sample_rate, int_values=int_values, augmentor=augmentor)
self.trim = trim_silence
self.channel_selector = channel_selector
self.is_regression_task = is_regression_task
self.id2occurrence = {}
self.labels_occurrence = None
if not is_regression_task:
self.labels = labels if labels else self._get_label_set()
self.num_classes = len(self.labels) if self.labels is not None else 1
self.label2id, self.id2label = {}, {}