Skip to content

Commit

Permalink
feat!: Lock bazel version
Browse files Browse the repository at this point in the history
BREAKING CHANGE: Bazel version is now locked to Bazel 3.2.0 and will be
bumped manually from now on. Builds will fail on all other versions
since now bazel will check the version before it compiles.

Documentation on how to install bazel is added as well to support
aarch64 until bazel releases binaries for the platform (which is soon)

Signed-off-by: Naren Dasan <naren@narendasan.com>
Signed-off-by: Naren Dasan <narens@nvidia.com>
  • Loading branch information
narendasan committed Jun 12, 2020
1 parent bbcf2ca commit 25f4371
Show file tree
Hide file tree
Showing 7 changed files with 135 additions and 11 deletions.
1 change: 1 addition & 0 deletions .bazelversion
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
3.2.0
20 changes: 19 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ torch.jit.save(trt_ts_module, "trt_torchscript_module.ts")

### Dependencies

- Bazel 3.2.0
- Libtorch 1.5.0
- CUDA 10.2
- cuDNN 7.6.5
Expand All @@ -81,7 +82,24 @@ Releases: https://github.com/NVIDIA/TRTorch/releases

### Installing Dependencies

You need to start by having CUDA installed on the system, Libtorch will automatically be pulled for you by bazel,
#### 0. Install Bazel

If you don't have bazel installed, the easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk

Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html

Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions

```sh
export BAZEL_VERSION=<VERSION>
mkdir bazel
cd bazel
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
unzip bazel-$BAZEL_VERSION-dist.zip
bash ./compile.sh
```

You need to start by having CUDA installed on the system, LibTorch will automatically be pulled for you by bazel,
then you have two options.

#### 1. Building using cuDNN & TensorRT tarball distributions
Expand Down
18 changes: 17 additions & 1 deletion docs/_sources/tutorials/installation.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,23 @@ Compiling From Source
Dependencies for Compilation
******************************************

TRTorch is built with Bazel, so begin by installing it. https://docs.bazel.build/versions/master/install.html
TRTorch is built with Bazel, so begin by installing it.

The easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk

Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html

Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions

```sh
export BAZEL_VERSION=3.2.0
mkdir bazel
cd bazel
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
unzip bazel-$BAZEL_VERSION-dist.zip
bash ./compile.sh
cp output/bazel /usr/local/bin/
```

You will also need to have CUDA installed on the system (or if running in a container, the system must have
the CUDA driver installed and the container must have CUDA)
Expand Down
2 changes: 1 addition & 1 deletion docs/searchindex.js

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion docs/sitemap.xml
Original file line number Diff line number Diff line change
@@ -1 +1 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/class_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DataType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DeviceType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a4422781719d7befedb364cacd91c6247.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a536bba54b70e44554099d23fa3d7e804.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ae38897d1ca4438227c970029d0f76fb5.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__logging.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__ptq.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo_1_1InputRange.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/trtorch_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_orphan.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/contributors/execution.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/contributors/phases.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/contributors/system_overview.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/index.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/genindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/py-modindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/search.html</loc></url></urlset>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/class_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DataType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ExtraInfo_1_1DeviceType.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8CacheCalibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/classtrtorch_1_1ptq_1_1Int8Calibrator.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a20c1fbeb21757871c52299dc52351b5f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a25ee153c325dfc7466a33cbd5c1ff055.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a48d6029a45583a06848891cb0e86f7ba.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a71b02dddfabe869498ad5a88e11c440f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1a9d31d0569348d109b1b069b972dd143e.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/define_macros_8h_1ae1c56ab8a40af292a9a4964651524d84.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/dir_cpp_api_include_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/enum_logging_8h_1a5f612ff2f783ff4fbe89d168f0d817d4.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/file_view_hierarchy.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a118d65b179defff7fff279eb9cd126cb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a396a688110397538f8b3fb7dfdaf38bb.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1a9b420280bfacc016d7e36a5704021949.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aa533955a2b908db9e5df5acdfa24715f.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1abc57d473f3af292551dee8b9c78373ad.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1adf5435f0dbb09c0d931a1b851847236b.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_logging_8h_1aef44b69c62af7cf2edc8875a9506641a.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a2cf17d43ba9117b3b4d652744b4f0447.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a4422781719d7befedb364cacd91c6247.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a536bba54b70e44554099d23fa3d7e804.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a5f33b142bc2f3f2aaf462270b3ad7e31.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1a726f6e7091b6b7be45b5a4275b2ffb10.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ab01696cfe08b6a5293c55935a9713c25.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/function_trtorch_8h_1ae38897d1ca4438227c970029d0f76fb5.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__logging.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/namespace_trtorch__ptq.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_logging.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_macros.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_ptq.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/program_listing_file_cpp_api_include_trtorch_trtorch.h.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/structtrtorch_1_1ExtraInfo_1_1InputRange.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/trtorch_cpp.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_api.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/_cpp_api/unabridged_orphan.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/index.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/tutorials/installation.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/genindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/py-modindex.html</loc></url><url><loc>https://nvidia.github.io/TRTorch/search.html</loc></url></urlset>
85 changes: 79 additions & 6 deletions docs/tutorials/installation.html
Original file line number Diff line number Diff line change
Expand Up @@ -455,32 +455,32 @@
<ul class="md-nav__list">
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#tensorrt-available-layers-and-expected-dimensions">
TensorRT Available Layers and Expected Dimensions:
TensorRT Available Layers and Expected Dimensions
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#tensorrt-c-documentation">
TensorRT C++ Documentation:
TensorRT C++ Documentation
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#tensorrt-python-documentation-sometimes-easier-to-read">
TensorRT Python Documentation (Sometimes easier to read):
TensorRT Python Documentation (Sometimes easier to read)
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#pytorch-functional-api">
PyTorch Functional API:
PyTorch Functional API
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#pytorch-native-ops">
PyTorch native_ops:
PyTorch native_ops
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="../contributors/useful_links.html#pytorch-ir-documentation">
PyTorch IR Documentation:
PyTorch IR Documentation
</a>
</li>
</ul>
Expand Down Expand Up @@ -751,10 +751,83 @@ <h2 id="dependencies-for-compilation">
</h2>
<p>
TRTorch is built with Bazel, so begin by installing it.
</p>
<p>
The easiest way is to install bazelisk using the method of you choosing
<a class="reference external" href="https://github.com/bazelbuild/bazelisk">
https://github.com/bazelbuild/bazelisk
</a>
</p>
<p>
Otherwise you can use the following instructions to install binaries
<a class="reference external" href="https://docs.bazel.build/versions/master/install.html">
https://docs.bazel.build/versions/master/install.html
</a>
</p>
<p>
Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions
</p>
<p>
<code class="docutils literal notranslate">
<span class="pre">
`sh
</span>
<span class="pre">
export
</span>
<span class="pre">
BAZEL_VERSION=3.2.0
</span>
<span class="pre">
mkdir
</span>
<span class="pre">
bazel
</span>
<span class="pre">
cd
</span>
<span class="pre">
bazel
</span>
<span class="pre">
curl
</span>
<span class="pre">
-fSsL
</span>
<span class="pre">
-O
</span>
<span class="pre">
https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
</span>
<span class="pre">
unzip
</span>
<span class="pre">
bazel-$BAZEL_VERSION-dist.zip
</span>
<span class="pre">
bash
</span>
<span class="pre">
./compile.sh
</span>
<span class="pre">
cp
</span>
<span class="pre">
output/bazel
</span>
<span class="pre">
/usr/local/bin/
</span>
<span class="pre">
`
</span>
</code>
</p>
<p>
You will also need to have CUDA installed on the system (or if running in a container, the system must have
the CUDA driver installed and the container must have CUDA)
Expand Down
18 changes: 17 additions & 1 deletion docsrc/tutorials/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,23 @@ Compiling From Source
Dependencies for Compilation
******************************************

TRTorch is built with Bazel, so begin by installing it. https://docs.bazel.build/versions/master/install.html
TRTorch is built with Bazel, so begin by installing it.

The easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk

Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html

Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions

```sh
export BAZEL_VERSION=3.2.0
mkdir bazel
cd bazel
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
unzip bazel-$BAZEL_VERSION-dist.zip
bash ./compile.sh
cp output/bazel /usr/local/bin/
```

You will also need to have CUDA installed on the system (or if running in a container, the system must have
the CUDA driver installed and the container must have CUDA)
Expand Down

0 comments on commit 25f4371

Please sign in to comment.