-
Notifications
You must be signed in to change notification settings - Fork 351
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(//core/conversion/converters/impl): added support for aten::stack
Signed-off-by: Abhiram Iyer <abhirami@nvidia.com> Signed-off-by: Abhiram Iyer <abhi.iyer.ai@gmail.com>
- Loading branch information
Showing
2 changed files
with
66 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
#include "torch/torch.h" | ||
#include "core/util/prelude.h" | ||
#include "core/conversion/converters/converters.h" | ||
#include "core/conversion/tensorcontainer/TensorContainer.h" | ||
#include "NvInfer.h" | ||
|
||
#include <ATen/ATen.h> | ||
#include <vector> | ||
|
||
namespace trtorch { | ||
namespace core { | ||
namespace conversion { | ||
namespace converters { | ||
namespace impl { | ||
namespace { | ||
|
||
auto stack_registrations TRTORCH_UNUSED = RegisterNodeConversionPatterns() | ||
.pattern({ | ||
"aten::stack(Tensor[] tensors, int dim=0) -> (Tensor)", | ||
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool { | ||
auto in = args[0].IValue()->toListRef(); | ||
auto dim = args[1].unwrapToInt(); | ||
|
||
std::vector<nvinfer1::ITensor*> tensors; | ||
|
||
for (auto t : in) { | ||
nvinfer1::ITensor* itensor; | ||
|
||
if (t.isTensor()) { | ||
auto weight = Weights(ctx, t.toTensor()); | ||
|
||
auto const_layer = ctx->net->addConstant(weight.shape, weight.data); | ||
TRTORCH_CHECK(const_layer, "Unable to create constant layer from node: " << *n); | ||
|
||
itensor = const_layer->getOutput(0); | ||
} else { | ||
auto cont = t.toCustomClass<TensorContainer>(); | ||
itensor = cont->tensor(); | ||
} | ||
|
||
auto shuffle_layer = ctx->net->addShuffle(*itensor); | ||
TRTORCH_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n); | ||
shuffle_layer->setReshapeDimensions(util::unsqueezeDims(itensor->getDimensions(), dim)); | ||
|
||
tensors.push_back(shuffle_layer->getOutput(0)); | ||
} | ||
|
||
auto concat_layer = ctx->net->addConcatenation(tensors.data(), tensors.size()); | ||
TRTORCH_CHECK(concat_layer, "Unable to create concatenation layer from node: " << *n); | ||
concat_layer->setAxis(static_cast<int>(dim)); | ||
auto out = ctx->AssociateValueAndTensor(n->outputs()[0], concat_layer->getOutput(0)); | ||
|
||
LOG_DEBUG("Output tensor shape: " << out->getDimensions()); | ||
|
||
return true; | ||
} | ||
}); | ||
|
||
} // namespace | ||
} // namespace impl | ||
} // namespace converters | ||
} // namespace conversion | ||
} // namespace core | ||
} // namespace trtorch |