|
| 1 | +from typing import List, Dict, Any |
| 2 | +import torch |
| 3 | +import tensorrt as trt |
| 4 | +import trtorch._C |
| 5 | +from trtorch import types |
| 6 | +from .version import __version__ |
| 7 | + |
| 8 | +def _supported_input_size_type(input_size: Any) -> bool: |
| 9 | + if isinstance(input_size, torch.Size): |
| 10 | + return True |
| 11 | + elif isinstance(input_size, tuple): |
| 12 | + return True |
| 13 | + elif isinstance(input_size, list): |
| 14 | + return True |
| 15 | + else: |
| 16 | + raise TypeError("Input sizes for inputs are required to be a List, tuple or torch.Size or a Dict of three sizes (min, opt, max), found type: " + str(type(input_size))) |
| 17 | + |
| 18 | +def _parse_input_sizes(input_sizes: List) -> List: |
| 19 | + |
| 20 | + if any (not isinstance(i, dict) and not _supported_input_size_type(i) for i in input_sizes): |
| 21 | + raise KeyError("An input size must either be a static size or a range of three sizes (min, opt, max) as Dict") |
| 22 | + |
| 23 | + parsed_input_sizes = [] |
| 24 | + for i in input_sizes: |
| 25 | + if isinstance(i, dict): |
| 26 | + if all (k in i for k in ["min", "opt", "min"]): |
| 27 | + in_range = trtorch._C.InputRange() |
| 28 | + in_range.min = i["min"] |
| 29 | + in_range.opt = i["opt"] |
| 30 | + in_range.max = i["max"] |
| 31 | + |
| 32 | + parsed_input_sizes.append(in_range.to_internal_input_range()) |
| 33 | + |
| 34 | + elif "opt" in i: |
| 35 | + in_range = trtorch._C.InputRange() |
| 36 | + in_range.min = i["opt"] |
| 37 | + in_range.opt = i["opt"] |
| 38 | + in_range.max = i["opt"] |
| 39 | + |
| 40 | + parsed_input_sizes.append(in_range.to_internal_input_range()) |
| 41 | + |
| 42 | + else: |
| 43 | + raise KeyError("An input size must either be a static size or a range of three sizes (min, opt, max) as Dict") |
| 44 | + |
| 45 | + elif isinstance(i, list): |
| 46 | + in_range = trtorch._C.InputRange() |
| 47 | + in_range.min = i |
| 48 | + in_range.opt = i |
| 49 | + in_range.max = i |
| 50 | + |
| 51 | + parsed_input_sizes.append(in_range.to_internal_input_range()) |
| 52 | + |
| 53 | + return parsed_input_sizes |
| 54 | + |
| 55 | +def _parse_op_precision(precision: Any) -> types.dtype: |
| 56 | + if isinstance(precision, torch.dtype): |
| 57 | + if precision == torch.int8: |
| 58 | + return types.dtype.int8 |
| 59 | + elif precision == torch.half: |
| 60 | + return types.dtype.half |
| 61 | + elif precision == torch.float: |
| 62 | + return types.dtype.float |
| 63 | + else: |
| 64 | + raise TypeError("Provided an unsupported dtype as operating precision (support: int8, half, float), got: " + str(precision)) |
| 65 | + |
| 66 | + elif isinstance(precision, types.DataTypes): |
| 67 | + return precision |
| 68 | + |
| 69 | + else: |
| 70 | + raise TypeError("Op precision type needs to be specified with a torch.dtype or a trtorch.dtype, got: " + str(type(precision))) |
| 71 | + |
| 72 | +def _parse_device_type(device: Any) -> types.DeviceType: |
| 73 | + if isinstance(device, torch.device): |
| 74 | + if torch.device.type == 'cuda': |
| 75 | + return types.DeviceType.gpu |
| 76 | + else: |
| 77 | + raise TypeError("Valid device choices are GPU (and DLA if on Jetson platforms) however got device type" + str(device.type)) |
| 78 | + |
| 79 | + elif isinstance(device, types.DeviceType): |
| 80 | + return device |
| 81 | + |
| 82 | + else: |
| 83 | + raise TypeError("Device specification must be of type torch.device or trtorch.DeviceType, but got: " + str(type(device))) |
| 84 | + |
| 85 | +def _parse_extra_info(extra_info: Dict[str, Any]) -> trtorch._C._ExtraInfo: |
| 86 | + info = trtorch._C._ExtraInfo() |
| 87 | + if "input_shapes" not in extra_info and not isinstance(extra_info["input_shapes"], list): |
| 88 | + raise KeyError("Input shapes for inputs are required as a List, provided as either a static sizes or a range of three sizes (min, opt, max) as Dict") |
| 89 | + |
| 90 | + info.input_ranges = _parse_input_sizes(extra_info["input_shapes"]) |
| 91 | + |
| 92 | + if "op_precision" in extra_info: |
| 93 | + info.op_precision = _parse_op_precision(extra_info["op_precision"]) |
| 94 | + |
| 95 | + if "refit" in extra_info: |
| 96 | + assert isinstance(extra_info["refit"], bool) |
| 97 | + info.refit = extra_info["refit"] |
| 98 | + |
| 99 | + if "debug" in extra_info: |
| 100 | + assert isinstance(extra_info["debug"], bool) |
| 101 | + info.debug = extra_info["debug"] |
| 102 | + |
| 103 | + if "strict_types" in extra_info: |
| 104 | + assert isinstance(extra_info["strict_types"], bool) |
| 105 | + info.strict_types = extra_info["strict_types"] |
| 106 | + |
| 107 | + if "allow_gpu_fallback" in extra_info: |
| 108 | + assert isinstance(extra_info["allow_gpu_fallback"], bool) |
| 109 | + info.allow_gpu_fallback = extra_info["allow_gpu_fallback"] |
| 110 | + |
| 111 | + if "device" in extra_info: |
| 112 | + info.device = _parse_device_type(extra_info["device"]) |
| 113 | + |
| 114 | + if "capability" in extra_info: |
| 115 | + assert isinstance(extra_info["capability"], type.EngineCapability) |
| 116 | + info.capability = extra_info["capability"] |
| 117 | + |
| 118 | + |
| 119 | + if "num_min_timing_iters" in extra_info: |
| 120 | + assert type(extra_info["num_min_timing_iters"]) is int |
| 121 | + info.num_min_timing_iters = extra_info["num_min_timing_iters"] |
| 122 | + |
| 123 | + if "num_avg_timing_iters" in extra_info: |
| 124 | + assert type(extra_info["num_avg_timing_iters"]) is int |
| 125 | + info.num_avg_timing_iters = extra_info["num_avg_timing_iters"] |
| 126 | + |
| 127 | + if "workspace_size" in extra_info: |
| 128 | + assert type(extra_info["workspace_size"]) is int |
| 129 | + info.workspace_size = extra_info["workspace_size"] |
| 130 | + |
| 131 | + if "max_batch_size" in extra_info: |
| 132 | + assert type(extra_info["max_batch_size"]) is int |
| 133 | + info.max_batch_size = extra_info["max_batch_size"] |
| 134 | + |
| 135 | + return info |
| 136 | + |
| 137 | +def compile_module(module: torch.jit.ScriptModule, extra_info: Any) -> torch.jit.ScriptModule: |
| 138 | + return module |
| 139 | + |
| 140 | +def convert_graph_to_trt_engine(module: torch.jit.ScriptModule, method_name: str, extra_info: Any) -> str: |
| 141 | + return trtorch._C._convert_graph_to_trt_engine(module._c, method_name, _parse_extra_info(extra_info)) |
| 142 | + |
| 143 | +def check_method_op_support(module: torch.jit.ScriptModule, method_name: str) -> bool: |
| 144 | + return trtorch._C._check_method_op_support(module._c, method_name) |
| 145 | + |
| 146 | +def dump_build_info(): |
| 147 | + print(get_build_info()) |
| 148 | + |
| 149 | +def get_build_info() -> str: |
| 150 | + build_info = trtorch._C._get_build_info() |
| 151 | + build_info = "TRTorch Version: " + str(__version__) + '\n' + build_info |
| 152 | + return build_info |
| 153 | + |
0 commit comments