-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy path_ipc_utils.py
122 lines (101 loc) · 4.3 KB
/
_ipc_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import array
import struct
import sys
from typing import List, Tuple
from cuda import cudart
from cuda.cudart import cudaError_t
from ._utils import mpi_comm
from .logger import logger
from .mapping import Mapping
def _raise_if_error(error: cudaError_t):
if error != cudaError_t.cudaSuccess:
raise RuntimeError(error)
def can_access_peer(mapping: Mapping) -> bool:
src_node = mapping.local_rank
for rank in mapping.tp_group:
dest_node = mapping.get_local_rank(rank)
if mapping.get_node_rank(
rank) != mapping.node_rank or dest_node == src_node:
continue
error, result = cudart.cudaDeviceCanAccessPeer(src_node, dest_node)
_raise_if_error(error)
if result == 0:
logger.info(
f"Cannot access peer device from {src_node} to {dest_node}")
return False
return True
class IpcMemory():
# WARNING: Must in sync with FLAGS_SIZE in cpp/include/tensorrt_llm/runtime/ipcUtils.h
# (Max all reduce blocks + 1) * sizeof(int)
IPC_BARRIERS_SIZE_PER_GPU = (24 + 1) * 4
def __init__(self, mapping: Mapping, size: int, open_ipc: bool = True):
self.mapping = mapping
self.open_ipc = open_ipc and mapping.tp_size <= mapping.gpus_per_node
if self.open_ipc:
self.peer_ptrs, self.local_ptr = IpcMemory.open_ipc_memory(
self.mapping, size, True)
else:
self.peer_ptrs = [0] * mapping.tp_size
self.local_ptr = 0
def __del__(self):
if not sys.is_finalizing() and self.open_ipc:
IpcMemory.close_ipc_memory(self.mapping, self.peer_ptrs)
def serialize(self) -> List[int]:
buffer = bytes(0)
for ptr in self.peer_ptrs:
buffer += struct.pack("P", ptr)
return array.array("Q", buffer).tolist()
@staticmethod
def open_ipc_memory(mapping: Mapping,
size: int,
set_to_zero: bool = False) -> Tuple[List[int], int]:
""" Allocates a buffer with the given *size* on each GPU. Then, enables IPC communication between TP groups.
Returns a list of buffer pointers, buffers[i] is a handle to the corresponding buffer residing on GPU #i.
Call close_ipc_handle with the *buffer*.
"""
comm = mpi_comm().Split(
mapping.pp_rank * mapping.cp_size + mapping.cp_rank,
mapping.tp_rank)
error, local_ptr = cudart.cudaMalloc(size)
_raise_if_error(error)
if set_to_zero:
_raise_if_error(cudart.cudaMemset(local_ptr, 0, size)[0])
error, local_handle = cudart.cudaIpcGetMemHandle(local_ptr)
_raise_if_error(error)
handles_reserved = comm.allgather(local_handle.reserved)
handles = []
for reserved in handles_reserved:
handle = cudart.cudaIpcMemHandle_t()
handle.reserved = reserved
handles.append(handle)
peer_ptrs = []
for node, handle in enumerate(handles):
if node == mapping.tp_rank:
peer_ptrs.append(local_ptr)
else:
error, ptr = cudart.cudaIpcOpenMemHandle(
handle, cudart.cudaIpcMemLazyEnablePeerAccess)
_raise_if_error(error)
peer_ptrs.append(ptr)
return peer_ptrs, local_ptr
@staticmethod
def close_ipc_memory(mapping: Mapping, peer_ptrs: List[int]):
for node, ptr in enumerate(peer_ptrs):
if node == mapping.tp_rank:
_raise_if_error(cudart.cudaFree(ptr)[0])
else:
_raise_if_error(cudart.cudaIpcCloseMemHandle(ptr)[0])