-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathbert_benchmark.py
137 lines (123 loc) · 5.47 KB
/
bert_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
# isort: off
import torch
import tensorrt as trt
#isort: on
from base_benchmark import BaseBenchmark
import tensorrt_llm
from tensorrt_llm._utils import trt_dtype_to_torch
from tensorrt_llm.runtime import TensorInfo
class BERTBenchmark(BaseBenchmark):
def __init__(self, args, batch_sizes, in_lens, gpu_weights_percents, rank,
world_size):
super().__init__(args.engine_dir, args.model, args.dtype, rank,
world_size)
self.batch_sizes = batch_sizes
self.in_lens = in_lens
self.build_time = 0
self.gpu_weights_percents = gpu_weights_percents
# Deserialize engine from engine directory
self.serialize_path = os.path.join(args.engine_dir, self.engine_name)
with open(self.serialize_path, 'rb') as f:
engine_buffer = f.read()
assert engine_buffer is not None
self.session = tensorrt_llm.runtime.Session.from_serialized_engine(
engine_buffer)
# Print context memory size for CI/CD to track.
context_mem_size = self.session.context_mem_size
print(
f"Allocated {context_mem_size / 1048576.0:.2f} MiB for execution context memory."
)
def get_config(self):
for inlen in self.in_lens:
if inlen > self.max_input_len:
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
continue
for gpu_weights_percent in self.gpu_weights_percents:
yield (batch_size, inlen, gpu_weights_percent)
def set_weight_streaming(self, config):
gpu_weights_percent = config[2]
self.session._set_weight_streaming(gpu_weights_percent)
def prepare_inputs(self, config):
batch_size, inlen = config[0], config[1]
input_ids = torch.randint(100, (batch_size, inlen)).int().cuda()
input_lengths = inlen * torch.ones(
(batch_size, ), dtype=torch.int32, device='cuda')
inputs = {'input_ids': input_ids, 'input_lengths': input_lengths}
output_info = self.session.infer_shapes([
TensorInfo('input_ids', trt.DataType.INT32, input_ids.shape),
TensorInfo('input_lengths', trt.DataType.INT32, input_lengths.shape)
])
outputs = {
t.name:
torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
stream = torch.cuda.current_stream().cuda_stream
return (inputs, outputs, stream)
def run(self, inputs, config, benchmark_profiler=None):
ok = self.session.run(*inputs)
assert ok, "Runtime execution failed"
torch.cuda.synchronize()
def report(self, config, latency, percentile95, percentile99,
peak_gpu_used):
if self.runtime_rank == 0:
line = '[BENCHMARK] ' + (
f'model_name {self.model_name} world_size {self.world_size} precision {self.dtype} '
f'batch_size {config[0]} input_length {config[1]} gpu_peak_mem(gb) {peak_gpu_used} '
f'build_time(s) {self.build_time} percentile95(ms) {percentile95} '
f'percentile99(ms) {percentile99} latency(ms) {latency}')
print(line)
def report(self,
config,
latency,
percentile95,
percentile99,
peak_gpu_used,
csv,
benchmark_profiler=None):
report_dict = super().get_report_dict()
batch_size, inlen = config[0], config[1]
report_dict["num_heads"] = self.num_heads
report_dict["num_kv_heads"] = self.num_heads
report_dict["num_layers"] = self.num_layers
report_dict["hidden_size"] = self.hidden_size
report_dict["vocab_size"] = self.vocab_size
report_dict["batch_size"] = batch_size
report_dict["input_length"] = inlen
report_dict["output_length"] = "n/a"
report_dict["gpu_weights_percent"] = config[2]
report_dict["latency(ms)"] = latency
report_dict["build_time(s)"] = self.build_time
report_dict["tokens_per_sec"] = "n/a"
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = '[BENCHMARK] ' + " ".join(kv_pairs)
print(line)