-
Notifications
You must be signed in to change notification settings - Fork 327
/
rtc.cpp
239 lines (207 loc) · 8 KB
/
rtc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*************************************************************************
* Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* See LICENSE for license information.
************************************************************************/
#include <cstdlib>
#include <iostream>
#include <utility>
#include "../common.h"
#include "../util/cuda_driver.h"
#include "../util/string.h"
#include "../util/system.h"
#include "../util/rtc.h"
namespace transformer_engine {
namespace rtc {
namespace {
// Strings with headers for RTC kernels
#include "string_code_utils_cuh.h"
/*! \brief Latest compute capability that NVRTC supports
*
* \return Compute capability as int. Last digit is minor revision,
* remaining digits are major revision.
*/
inline int max_supported_sm_arch() {
static int arch_ = -1;
if (arch_ < 0) {
int num_archs = 0;
NVTE_CHECK_NVRTC(nvrtcGetNumSupportedArchs(&num_archs));
NVTE_CHECK(num_archs > 0, "Could not determine SM archs that NVRTC supports");
std::vector<int> archs(num_archs);
NVTE_CHECK_NVRTC(nvrtcGetSupportedArchs(archs.data()));
arch_ = archs.back();
}
return arch_;
}
} // namespace
bool is_enabled() {
static bool is_enabled_ = false;
static bool need_to_check_env = true;
if (need_to_check_env) {
is_enabled_ = !getenv<bool>("NVTE_DISABLE_NVRTC");
need_to_check_env = false;
}
return is_enabled_;
}
Kernel::Kernel(std::string mangled_name, std::string compiled_code)
: mangled_name_{std::move(mangled_name)}
, compiled_code_{std::move(compiled_code)}
, modules_(cuda::num_devices(), null_module)
, functions_(cuda::num_devices(), null_function)
, init_flags_{std::make_unique<std::vector<std::once_flag>>(cuda::num_devices())} {
}
Kernel::~Kernel() {
for (int device_id=0; device_id<static_cast<int>(modules_.size()); ++device_id) {
// Unload CUDA modules if needed
if (modules_[device_id] != null_module) {
CUdevice device;
CUcontext context;
if (cuda_driver::call("cuDeviceGet", &device, device_id)
!= CUDA_SUCCESS) {
continue;
}
if (cuda_driver::call("cuDevicePrimaryCtxRetain", &context, device)
!= CUDA_SUCCESS) {
continue;
}
cuda_driver::call("cuModuleUnload", modules_[device_id]);
cuda_driver::call("cuDevicePrimaryCtxRelease", device);
}
}
}
Kernel::Kernel(Kernel&& other) noexcept {
swap(*this, other);
}
Kernel& Kernel::operator=(Kernel other) noexcept {
// Copy-and-swap idiom
swap(*this, other);
return *this;
}
void swap(Kernel& first, Kernel& second) noexcept {
using std::swap;
swap(first.mangled_name_, second.mangled_name_);
swap(first.compiled_code_, second.compiled_code_);
swap(first.modules_, second.modules_);
swap(first.functions_, second.functions_);
swap(first.init_flags_, second.init_flags_);
}
CUfunction Kernel::get_function(int device_id) {
// Load kernel on device if needed
auto load_on_device = [&] () {
// Set driver context to proper device
CUdevice device;
CUcontext context;
NVTE_CALL_CHECK_CUDA_DRIVER(cuDeviceGet, &device, device_id);
NVTE_CALL_CHECK_CUDA_DRIVER(cuDevicePrimaryCtxRetain, &context, device);
// Load function into driver context
NVTE_CALL_CHECK_CUDA_DRIVER(cuModuleLoadDataEx,
&modules_[device_id],
compiled_code_.c_str(),
0, // numOptions
nullptr, // options
nullptr); // optionValues
NVTE_CALL_CHECK_CUDA_DRIVER(cuModuleGetFunction,
&functions_[device_id],
modules_[device_id],
mangled_name_.c_str());
// Reset driver context
NVTE_CALL_CHECK_CUDA_DRIVER(cuDevicePrimaryCtxRelease, device);
};
std::call_once(init_flags_->at(device_id), load_on_device);
// Return CUDA function
return functions_[device_id];
}
KernelManager& KernelManager::instance() {
NVTE_CHECK(is_enabled(), "NVRTC support is not enabled");
static KernelManager instance_;
return instance_;
}
void KernelManager::compile(const std::string &kernel_label,
const std::string &kernel_name,
const std::string &code,
const std::string &filename) {
std::lock_guard<std::mutex> lock_guard_(lock_);
// Choose whether to compile to PTX or cubin
const int device_id = cuda::current_device();
const int sm_arch_ = cuda::sm_arch(device_id);
const int compile_sm_arch = std::min(sm_arch_, max_supported_sm_arch());
const bool compile_ptx = (CUDA_VERSION <= 11000) || (sm_arch_ != compile_sm_arch);
// Compilation flags
std::vector<std::string> opts = {
#if NDEBUG == 0
"-G",
#endif
"--std=c++17"};
if (compile_ptx) {
opts.push_back(concat_strings("--gpu-architecture=compute_", compile_sm_arch));
} else {
opts.push_back(concat_strings("--gpu-architecture=sm_", compile_sm_arch));
}
opts.push_back(concat_strings("-I", cuda::include_directory(true)));
std::vector<const char*> opts_ptrs;
for (const auto& opt : opts) {
opts_ptrs.push_back(opt.c_str());
}
// Compile source
nvrtcProgram program;
constexpr int num_headers = 1;
constexpr const char* headers[num_headers] = {string_code_utils_cuh};
constexpr const char* include_names[num_headers] = {"utils.cuh"};
NVTE_CHECK_NVRTC(nvrtcCreateProgram(&program,
code.c_str(),
filename.c_str(),
num_headers,
headers,
include_names));
NVTE_CHECK_NVRTC(nvrtcAddNameExpression(program, kernel_name.c_str()));
const nvrtcResult compile_result = nvrtcCompileProgram(program,
opts_ptrs.size(),
opts_ptrs.data());
if (compile_result != NVRTC_SUCCESS) {
// Display log if compilation failed
std::string log = concat_strings("NVRTC compilation log for ",
filename, ":\n");
const size_t log_offset = log.size();
size_t log_size;
NVTE_CHECK_NVRTC(nvrtcGetProgramLogSize(program, &log_size));
log.resize(log_offset + log_size);
NVTE_CHECK_NVRTC(nvrtcGetProgramLog(program, &log[log_offset]));
log.back() = '\n';
std::cerr << log;
NVTE_CHECK_NVRTC(compile_result);
}
// Get mangled function name
const char *mangled_name;
NVTE_CHECK_NVRTC(nvrtcGetLoweredName(program,
kernel_name.c_str(),
&mangled_name));
// Get compiled code
std::string compiled_code;
if (compile_ptx) {
size_t compiled_size;
NVTE_CHECK_NVRTC(nvrtcGetPTXSize(program, &compiled_size));
compiled_code.resize(compiled_size);
NVTE_CHECK_NVRTC(nvrtcGetPTX(program, compiled_code.data()));
} else {
size_t compiled_size;
NVTE_CHECK_NVRTC(nvrtcGetCUBINSize(program, &compiled_size));
compiled_code.resize(compiled_size);
NVTE_CHECK_NVRTC(nvrtcGetCUBIN(program, compiled_code.data()));
}
// Cache compiled code
const auto key = get_kernel_cache_key(kernel_label, device_id);
kernel_cache_.insert({key, Kernel(mangled_name, std::move(compiled_code))});
kernel_cache_.at(key).get_function(device_id); // Make sure kernel is available on device
// Clean up
NVTE_CHECK_NVRTC(nvrtcDestroyProgram(&program));
}
bool KernelManager::is_compiled(const std::string &kernel_label, int device_id) const {
const auto key = get_kernel_cache_key(kernel_label, device_id);
return kernel_cache_.count(key) > 0;
}
std::string KernelManager::get_kernel_cache_key(const std::string &kernel_label,
int device_id) const {
return concat_strings("sm=", cuda::sm_arch(device_id), ",", kernel_label);
}
} // namespace rtc
} // namespace transformer_engine