-
Notifications
You must be signed in to change notification settings - Fork 40
/
splines.py
319 lines (265 loc) · 12.6 KB
/
splines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Original Source:
# Original Source:
# https://github.com/ndeutschmann/zunis/blob/master/zunis_lib/zunis/models/flows/coupling_cells/piecewise_coupling/piecewise_linear.py
# https://github.com/ndeutschmann/zunis/blob/master/zunis_lib/zunis/models/flows/coupling_cells/piecewise_coupling/piecewise_quadratic.py
# Modifications made to jacobian computation by Yurong You and Kevin Shih
# Original License Text:
#########################################################################
# The MIT License (MIT)
# Copyright (c) 2020, nicolas deutschmann
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import torch
import torch.nn.functional as F
third_dimension_softmax = torch.nn.Softmax(dim=2)
def piecewise_linear_transform(x, q_tilde, compute_jacobian=True,
outlier_passthru=True):
"""Apply an element-wise piecewise-linear transformation to some variables
Parameters
----------
x : torch.Tensor
a tensor with shape (N,k) where N is the batch dimension while k is the
dimension of the variable space. This variable span the k-dimensional unit
hypercube
q_tilde: torch.Tensor
is a tensor with shape (N,k,b) where b is the number of bins.
This contains the un-normalized heights of the bins of the piecewise-constant PDF for dimension k,
i.e. q_tilde lives in all of R and we don't impose a constraint on their sum yet.
Normalization is imposed in this function using softmax.
compute_jacobian : bool, optional
determines whether the jacobian should be compute or None is returned
Returns
-------
tuple of torch.Tensor
pair `(y,h)`.
- `y` is a tensor with shape (N,k) living in the k-dimensional unit hypercube
- `j` is the jacobian of the transformation with shape (N,) if compute_jacobian==True, else None.
"""
logj = None
# TODO bottom-up assesment of handling the differentiability of variables
# Compute the bin width w
N, k, b = q_tilde.shape
Nx, kx = x.shape
assert N == Nx and k == kx, "Shape mismatch"
w = 1. / b
# Compute normalized bin heights with softmax function on bin dimension
q = 1. / w * third_dimension_softmax(q_tilde)
# x is in the mx-th bin: x \in [0,1],
# mx \in [[0,b-1]], so we clamp away the case x == 1
mx = torch.clamp(torch.floor(b * x), 0, b - 1).to(torch.long)
# Need special error handling because trying to index with mx
# if it contains nans will lock the GPU. (device-side assert triggered)
if torch.any(torch.isnan(mx)).item() or torch.any(mx < 0) or torch.any(mx >= b):
raise AvertedCUDARuntimeError("NaN detected in PWLinear bin indexing")
# We compute the output variable in-place
out = x - mx * w # alpha (element of [0.,w], the position of x in its bin
# Multiply by the slope
# q has shape (N,k,b), mxu = mx.unsqueeze(-1) has shape (N,k) with entries that are a b-index
# gather defines slope[i, j, k] = q[i, j, mxu[i, j, k]] with k taking only 0 as a value
# i.e. we say slope[i, j] = q[i, j, mx [i, j]]
slopes = torch.gather(q, 2, mx.unsqueeze(-1)).squeeze(-1)
out = out * slopes
# The jacobian is the product of the slopes in all dimensions
# Compute the integral over the left-bins.
# 1. Compute all integrals: cumulative sum of bin height * bin weight.
# We want that index i contains the cumsum *strictly to the left* so we shift by 1
# leaving the first entry null, which is achieved with a roll and assignment
q_left_integrals = torch.roll(torch.cumsum(q, 2) * w, 1, 2)
q_left_integrals[:, :, 0] = 0
# 2. Access the correct index to get the left integral of each point and add it to our transformation
out = out + torch.gather(q_left_integrals, 2, mx.unsqueeze(-1)).squeeze(-1)
# Regularization: points must be strictly within the unit hypercube
# Use the dtype information from pytorch
eps = torch.finfo(out.dtype).eps
out = out.clamp(
min=eps,
max=1. - eps
)
oob_mask = torch.logical_or(x < 0.0, x >1.0).detach().float()
if outlier_passthru:
out = out * (1-oob_mask) + x * oob_mask
slopes = slopes * (1-oob_mask) + oob_mask
if compute_jacobian:
#logj = torch.log(torch.prod(slopes.float(), 1))
logj = torch.sum(torch.log(slopes), 1)
del slopes
return out, logj
def piecewise_linear_inverse_transform(y, q_tilde, compute_jacobian=True,
outlier_passthru=True):
"""
Apply inverse of an element-wise piecewise-linear transformation to some
variables
Parameters
----------
y : torch.Tensor
a tensor with shape (N,k) where N is the batch dimension while k is the
dimension of the variable space. This variable span the k-dimensional unit
hypercube
q_tilde: torch.Tensor
is a tensor with shape (N,k,b) where b is the number of bins.
This contains the un-normalized heights of the bins of the piecewise-constant PDF for dimension k,
i.e. q_tilde lives in all of R and we don't impose a constraint on their sum yet.
Normalization is imposed in this function using softmax.
compute_jacobian : bool, optional
determines whether the jacobian should be compute or None is returned
Returns
-------
tuple of torch.Tensor
pair `(x,h)`.
- `x` is a tensor with shape (N,k) living in the k-dimensional unit hypercube
- `j` is the jacobian of the transformation with shape (N,) if compute_jacobian==True, else None.
"""
# TODO bottom-up assesment of handling the differentiability of variables
# Compute the bin width w
N, k, b = q_tilde.shape
Ny, ky = y.shape
assert N == Ny and k == ky, "Shape mismatch"
w = 1. / b
# Compute normalized bin heights with softmax function on the bin dimension
q = 1. / w * third_dimension_softmax(q_tilde)
# Compute the integral over the left-bins in the forward transform.
# 1. Compute all integrals: cumulative sum of bin height * bin weight.
# We want that index i contains the cumsum *strictly to the left*,
# so we shift by 1 leaving the first entry null,
# which is achieved with a roll and assignment
q_left_integrals = torch.roll(torch.cumsum(q.float(), 2) * w, 1, 2)
q_left_integrals[:, :, 0] = 0
# Find which bin each y belongs to by finding the smallest bin such that
# y - q_left_integral is positive
edges = (y.unsqueeze(-1) - q_left_integrals).detach()
# y and q_left_integrals are between 0 and 1,
# so that their difference is at most 1.
# By setting the negative values to 2., we know that the
# smallest value left is the smallest positive
edges[edges < 0] = 2.
edges = torch.clamp(torch.argmin(edges, dim=2), 0, b - 1).to(torch.long)
# Need special error handling because trying to index with mx
# if it contains nans will lock the GPU. (device-side assert triggered)
if torch.any(torch.isnan(edges)).item() or torch.any(edges < 0) or torch.any(edges >= b):
raise AvertedCUDARuntimeError("NaN detected in PWLinear bin indexing")
# Gather the left integrals at each edge. See comment about gathering in q_left_integrals
# for the unsqueeze
q_left_integrals = q_left_integrals.gather(2, edges.unsqueeze(-1)).squeeze(-1)
# Gather the slope at each edge.
q = q.gather(2, edges.unsqueeze(-1)).squeeze(-1)
# Build the output
x = (y - q_left_integrals) / q + edges * w
# Regularization: points must be strictly within the unit hypercube
# Use the dtype information from pytorch
eps = torch.finfo(x.dtype).eps
x = x.clamp(
min=eps,
max=1. - eps
)
oob_mask = torch.logical_or(y < 0.0, y >1.0).detach().float()
if outlier_passthru:
x = x * (1-oob_mask) + y * oob_mask
q = q * (1-oob_mask) + oob_mask
# Prepare the jacobian
logj = None
if compute_jacobian:
#logj = - torch.log(torch.prod(q, 1))
logj = -torch.sum(torch.log(q.float()), 1)
return x.detach(), logj
def unbounded_piecewise_quadratic_transform(x, w_tilde, v_tilde, upper=1,
lower=0, inverse=False):
assert upper > lower
_range = upper - lower
inside_interval_mask = (x >= lower) & (x < upper)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(x)
log_j = torch.zeros_like(x)
outputs[outside_interval_mask] = x[outside_interval_mask]
log_j[outside_interval_mask] = 0
output, _log_j = piecewise_quadratic_transform(
(x[inside_interval_mask] - lower) / _range,
w_tilde[inside_interval_mask, :],
v_tilde[inside_interval_mask, :],
inverse=inverse)
outputs[inside_interval_mask] = output * _range + lower
if not inverse:
# the before and after transformation cancel out, so the log_j would be just as it is.
log_j[inside_interval_mask] = _log_j
else:
log_j = None
return outputs, log_j
def weighted_softmax(v, w):
# to avoid NaN...
v = v - torch.max(v, dim=-1, keepdim=True)[0]
v = torch.exp(v) + 1e-8 # to avoid NaN...
v_sum = torch.sum((v[..., :-1] + v[..., 1:]) / 2 * w, dim=-1, keepdim=True)
return v / v_sum
def piecewise_quadratic_transform(x, w_tilde, v_tilde, inverse=False):
"""Element-wise piecewise-quadratic transformation
Parameters
----------
x : torch.Tensor
*, The variable spans the D-dim unit hypercube ([0,1))
w_tilde : torch.Tensor
* x K defined in the paper
v_tilde : torch.Tensor
* x (K+1) defined in the paper
inverse : bool
forward or inverse
Returns
-------
c : torch.Tensor
*, transformed value
log_j : torch.Tensor
*, log determinant of the Jacobian matrix
"""
w = torch.softmax(w_tilde, dim=-1)
v = weighted_softmax(v_tilde, w)
w_cumsum = torch.cumsum(w, dim=-1)
# force sum = 1
w_cumsum[..., -1] = 1.
w_cumsum_shift = F.pad(w_cumsum, (1,0), 'constant', 0)
cdf = torch.cumsum((v[..., 1:] + v[..., :-1]) / 2 * w, dim=-1)
# force sum = 1
cdf[..., -1] = 1.
cdf_shift = F.pad(cdf, (1,0), 'constant', 0)
if not inverse:
# * x D x 1, (w_cumsum[idx-1] < x <= w_cumsum[idx])
bin_index = torch.searchsorted(w_cumsum, x.unsqueeze(-1))
else:
# * x D x 1, (cdf[idx-1] < x <= cdf[idx])
bin_index = torch.searchsorted(cdf, x.unsqueeze(-1))
w_b = torch.gather(w, -1, bin_index).squeeze(-1)
w_bn1 = torch.gather(w_cumsum_shift, -1, bin_index).squeeze(-1)
v_b = torch.gather(v, -1, bin_index).squeeze(-1)
v_bp1 = torch.gather(v, -1, bin_index + 1).squeeze(-1)
cdf_bn1 = torch.gather(cdf_shift, -1, bin_index).squeeze(-1)
if not inverse:
alpha = (x - w_bn1) / w_b.clamp(min=torch.finfo(w_b.dtype).eps)
c = (alpha ** 2) / 2 * (v_bp1 - v_b) * w_b + alpha * v_b * w_b + cdf_bn1
# just sum of log pdfs
log_j = torch.lerp(v_b, v_bp1, alpha).clamp(min=torch.finfo(c.dtype).eps).log()
# make sure it falls into [0,1)
c = c.clamp(min=torch.finfo(c.dtype).eps, max=1. - torch.finfo(c.dtype).eps)
return c, log_j
else:
# quadratic equation for alpha
# alpha should fall into (0, 1]. Since a, b > 0, the symmetry axis -b/2a < 0 and we should pick the larger root
# skip calculating the log_j in inverse since we don't need it
a = (v_bp1 - v_b) * w_b / 2
b = v_b * w_b
c = cdf_bn1 - x
alpha = (-b + torch.sqrt((b**2) - 4 * a * c)) / (2 * a)
inv = alpha * w_b + w_bn1
# make sure it falls into [0,1)
inv = inv.clamp(min=torch.finfo(c.dtype).eps, max=1. - torch.finfo(inv.dtype).eps)
return inv, None