-
Notifications
You must be signed in to change notification settings - Fork 1
/
lightgbm_dev.py
166 lines (157 loc) · 5.12 KB
/
lightgbm_dev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
from processing import build_data
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import roc_auc_score
import lightgbm as lgb
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--lang', default='en_es')
parser.add_argument('--users', default='all')
# use this to change language pair trained on
args = vars(parser.parse_args())
lang = args['lang']
users = args['users']
if users == 'all':
n_users = None
else:
n_users = int(users)
print('using ' + lang + ' dataset, ' + users + ' users')
# lightgbm parameters for each model. Different ones might be better for
# different language pairs
params = {
'fr_en': {
'application': 'binary',
'metric': 'auc',
'learning_rate': .05,
'num_leaves': 256,
'min_data_in_leaf': 100,
'num_boost_round': 750,
'cat_smooth': 200,
'feature_fraction': .7,
},
'en_es': {
'application': 'binary',
'metric': 'auc',
'learning_rate': .05,
'num_leaves': 512,
'min_data_in_leaf': 100,
'num_boost_round': 650,
'cat_smooth': 200,
'feature_fraction': .7,
},
'es_en': {
'application': 'binary',
'metric': 'auc',
'learning_rate': .05,
'num_leaves': 512,
'min_data_in_leaf': 100,
'num_boost_round': 600,
'cat_smooth': 200,
'feature_fraction': .7,
},
'all': {
'application': 'binary',
'metric': 'auc',
'learning_rate': .05,
'num_leaves': 1024,
'min_data_in_leaf': 100,
'num_boost_round': 750,
'cat_smooth': 200,
'max_cat_threshold': 64,
'feature_fraction': .7,
}
}
# load data
if lang == 'all':
data = build_data(
'all',
[
'data/data_{0}/{0}.slam.20171218.train.new'.format('en_es'),
'data/data_{0}/{0}.slam.20171218.train.new'.format('fr_en'),
'data/data_{0}/{0}.slam.20171218.train.new'.format('es_en')
],
[
'data/data_{0}/{0}.slam.20171218.dev.new'.format('en_es'),
'data/data_{0}/{0}.slam.20171218.dev.new'.format('fr_en'),
'data/data_{0}/{0}.slam.20171218.dev.new'.format('es_en')
],
labelfiles=[
'data/data_{0}/{0}.slam.20171218.dev.key'.format('en_es'),
'data/data_{0}/{0}.slam.20171218.dev.key'.format('fr_en'),
'data/data_{0}/{0}.slam.20171218.dev.key'.format('es_en')
],
n_users=n_users)
else:
data = build_data(
lang[:2],
['data/data_{0}/{0}.slam.20171218.train.new'.format(lang)],
['data/data_{0}/{0}.slam.20171218.dev.new'.format(lang)],
labelfiles=['data/data_{0}/{0}.slam.20171218.dev.key'.format(lang)],
n_users=n_users)
train_x, train_ids, train_y, test_x, test_ids, test_y = data
word_feat = 'token'
word_stats = {}
if lang == 'all':
langlist = ['en_es', 'fr_en', 'es_en']
else:
langlist = [lang]
for l in langlist:
with open('data/'+l+'_wordwordfeats.txt', 'r') as f:
for line in f.readlines():
line = line.split(',')
# add language identifier tag to end of word,
# as is done in features
word_stats[line[0].lower()+'_'+l[:2]] = {
'frequency': float(line[2]),
'levenshtein': int(line[3]),
'leven_frac': float(line[4]),
'aoa': float(line[5])
}
for d in train_x + test_x:
word = d[word_feat].lower()
if word in word_stats:
stats = word_stats[word]
d['frequency'] = stats['frequency']
d['levenshtein'] = stats['levenshtein']
d['leven_frac'] = stats['leven_frac']
d['aoa'] = stats['aoa']
cat_features = ['token', 'root', 'user',
'prev_token', 'next_token', 'parseroot_token']
for key in cat_features:
val_dict = {}
val_idx = 0
for d in train_x + test_x:
t = d[key]
if t in val_dict:
d[key] = val_dict[t]
else:
val_dict[t] = val_idx
d[key] = val_idx
val_idx += 1
# put data in scipy sparse matrix
dv = DictVectorizer()
train_x_sparse = dv.fit_transform(train_x)
test_x_sparse = dv.transform(test_x)
names = dv.feature_names_
# train light gradient boosting machine model
d_train = lgb.Dataset(train_x_sparse, label=train_y)
d_valid = lgb.Dataset(test_x_sparse, label=test_y)
bst = lgb.train(params[lang], d_train, valid_sets=[d_train, d_valid],
valid_names=['train', 'valid'],
feature_name=names,
categorical_feature=cat_features,
num_boost_round=params[lang]['num_boost_round'],
verbose_eval=10)
if not os.path.exists('models'):
os.makedirs('models')
bst.save_model('models/dev.{}.bst'.format(lang))
test_predicted = bst.predict(test_x_sparse)
# print auc score
print(roc_auc_score(test_y, test_predicted))
test_predictions_df = pd.DataFrame({
'instance': test_ids,
'prediction': test_predicted
})
test_predictions_df.to_csv('dev.{}.pred'.format(lang), header=False,
index=False, sep=" ")