-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComplexIteratedDerivatives.tex
207 lines (184 loc) · 8.01 KB
/
ComplexIteratedDerivatives.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
\documentclass[]{article}
%margins
\usepackage[a4paper,margin=0.15in]{geometry}
%document colors
\usepackage{xcolor}
\definecolor{favoritecolor1}{HTML}{607CB2}
\definecolor{favoritecolor2}{HTML}{303E59}
\makeatletter
\newcommand{\globalcolor}[1]{%
\color{#1}\global\let\default@color\current@color
}
\makeatother
\AtBeginDocument{\globalcolor{favoritecolor2}}
\pagecolor{favoritecolor1}
%made from template named MathArticleTemplate
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{hyperref}
\hypersetup{colorlinks=true}
\usepackage{graphics}
%Fix \eqref in section title
\pdfstringdefDisableCommands{\def\eqref#1{(\ref{#1})}}
\DeclareMathOperator{\rues}{rues}
\DeclareMathOperator{\cidf}{cidf}
\DeclareMathOperator{\cidzero}{cidzero}
\DeclareMathOperator{\Cid}{Cid}
\DeclareMathOperator{\cidrues}{cidrues}
\DeclareMathOperator{\ez}{Ez}
\DeclareMathOperator{\gs}{gs}
\DeclareMathOperator{\md}{mod}
\DeclareMathOperator{\pow}{Pow}
%Parenthesis, Braces, Brackets usepackage{physics}
\newcommand{\pqty}[1]{{\left(#1\right)}}
\newcommand{\Bqty}[1]{{\left\{#1\right\}}}
\newcommand{\bqty}[1]{{\left[#1\right]}}
\newcommand{\abs}[1]{{\left\lvert#1\right\rvert}}
%other stuff
\newcommand{\floor}[1]{{\left\lfloor#1\right\rfloor}}
\newcommand{\ceil}[1]{{\left\lceil#1\right\rceil}}
%Laplace transform and inverse
\newcommand{\laplace}[1]{\mathcal{L}\Bqty{#1}\pqty{s}}
\newcommand{\laplaceInv}[1]{\mathcal{L}^{-1}\Bqty{#1}\pqty{t}}
%Derivatives
\newcommand{\pdiff}[2]{\frac{\partial^{#2}}{\partial #1^{#2}}}
%lemma,theorem, proof
\newtheorem{theorem}{Theorem}[section]
\newtheorem{example}{Example}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{corollary}[theorem]{Corollary}
\numberwithin{equation}{section}
%\usepackage{minted}
%opening
\author{Mark Andrew Gerads: \href{MailTo:Nazgand@Gmail.Com}{Nazgand@Gmail.Com}}
\title{
Complex Iterated Derivatives
\href{https://github.com/Nazgand/nazgandMathBook}{https://github.com/Nazgand/nazgandMathBook}
}
\begin{document}
\maketitle
\begin{abstract}
The goal of this paper is to analyze the iterated derivative extended to a complex number of iterations.
\end{abstract}
\section{Complex Iterated Derivative For Functions, In General}
Let us have a function, $\mathbb{C}^2\to\mathbb{C}$, $\cidf\pqty{m,z}$ such that $\cidf\pqty{0,z}=f\pqty{z}$ and $\pdiff{z}{k}\cidf\pqty{m,z}=\cidf\pqty{m+k,z}$. Let $\Cid\pqty{f\pqty{z}}$ be the set of functions with the properties of $\cidf$, so $\cidf\pqty{m,z}\in\Cid\pqty{f\pqty{z}}$.
We can deduce $\infty$ more functions with the same properties as $\cidf$.
If we have an arbitrary wave function, $w\pqty{m}=w\pqty{m+1}$, then it produces another function with the properties of $\cidf$:
\begin{equation}
\cidf\pqty{m+w\pqty{m}-w\pqty{0},z}\in \Cid\pqty{f\pqty{z}}
\end{equation}
\begin{equation}
\pqty{1+w\pqty{m}-w\pqty{0}}\cidf\pqty{m,z}\in \Cid\pqty{f\pqty{z}}
\end{equation}
The previous statement can be simplified:
\begin{equation}
\pqty{w\pqty{m}-w\pqty{0}}\cidf\pqty{m,z}\in \Cid\pqty{0}
\end{equation}
A simple thing to note is:
\begin{equation}
\label{Cid scale function argument}
k\in\mathbb{Z}^{\geq 0}
\Rightarrow
\pdiff{z}{k}\cidf\pqty{m,bz}=b^k\cidf\pqty{m+k,bz}
\end{equation}
\eqref{Cid scale function argument} can be restated as
\begin{equation}
b^m\cidf\pqty{m,bz}\in\Cid\pqty{f\pqty{bz}}
\end{equation}
Note that [the weighted average of a set of functions all having the property of $\cidf$] also has the properties of $\cidf$. Let $\sum_{j\in\mathbb{Z}}c_j=1$ and $\cidf_j\pqty{m,z}\in\Cid\pqty{f\pqty{z}}$. Then
\begin{equation}
\sum_{j\in\mathbb{Z}}c_j \cidf_j\pqty{m,z}\in \Cid\pqty{f\pqty{z}}
\end{equation}
If we has solutions for the complex iterated derivative of 2 function, we can add the solutions to get a solution to the complex iterated derivative of the sum of the functions:
\begin{equation}
\bqty{\forall k,\cidf_k\pqty{m,z}\in\Cid\pqty{f_k\pqty{z}}}
\Rightarrow
\cidf_1\pqty{m,z}+\cidf_2\pqty{m,z}\in\Cid\pqty{f_1\pqty{z}+f_2\pqty{z}}
\end{equation}
The complications of multiple solutions can be shifted by adding the set $\Cid\pqty{0}$ to a single solution:
\begin{equation}
\Cid\pqty{f\pqty{z}}=
\Bqty{\cidf\pqty{m,z}+\cidzero\pqty{m,z} \mid \cidzero\pqty{m,z}\in\Cid\pqty{0}}
\end{equation}
I thus declare the shorthand notation, reminiscent of the constant of integration:
\begin{equation}
\pdiff{z}{m}f\pqty{z}=\cidf\pqty{m,z}+\Cid\pqty{0}
\end{equation}
Another useful property is
\begin{equation}
\label{cid m+k}
\cidf\pqty{m+k,z}\in\Cid\pqty{\cidf\pqty{k,z}}
\end{equation}
\section{Complex Iterated Derivative For Specific Functions}
First, the simplest solution to the complex iterated derivative of the exponential function:
\begin{equation}
e^z\in \Cid\pqty{e^z}
\end{equation}
Thus, for an arbitrary exponential function, using \eqref{Cid scale function argument}, we can say:
\begin{equation}
\ln\pqty{t}^m t^z\in \Cid\pqty{t^z}
\end{equation}
Thus, with the linearity of the complex iterated derivative, we have a way to evaluate the complex iterated derivative of arbitrary linear combinations of exponential functions. Example, where the sums converge or are continued analytically:
\begin{equation}
\zeta\pqty{z}-1=\sum_{t=2}^{\infty}t^{-z}
\Rightarrow
\sum_{t=2}^{\infty}\ln\pqty{t^{-1}}^m t^{-z}\in\Cid\pqty{\zeta\pqty{z}-1}
\end{equation}
We might want to add $1$ to get $\zeta\pqty{z}$, so next is $\Cid\pqty{1}$:
\begin{equation}
\frac{z^{-m}}{\Gamma\pqty{1-m}}\in\Cid\pqty{1}
\end{equation}
For $k\in\mathbb{Z}^+$ and an arbitrary constant $c$,
\begin{equation}
\frac{cz^{-k-m}}{\Gamma\pqty{1-k-m}}\in\Cid\pqty{0}
\end{equation}
From \eqref{cid m+k} and $\Cid\pqty{1}$, the power functions are obtained:
\begin{equation}
\frac{z^{-m-k}}{\Gamma\pqty{1-m-k}}\in\Cid\pqty{\frac{z^{-k}}{\Gamma\pqty{1-k}}}
\end{equation}
As can be seen by dividing by $\Gamma\pqty{1-k}$ and substituting $k\to -k$, in the specific case where the left side of the following equation is not an indeterminate form:
\begin{equation} \frac{\Gamma\pqty{1+k}z^{k-m}}{\Gamma\pqty{1+k-m}}\in\Cid\pqty{z^{k}}
\end{equation}
The linearity of complex iterated derivatives combines with the linearity of integrals so that for an arbitrary function $g$ and arbitrary constants $a,b$, where the integral converges:
\begin{equation}
\int_{a}^{b}g\pqty{t}\ln\pqty{t}^m t^z dt
\in\Cid\pqty{\int_{a}^{b}g\pqty{t}t^z dt}
\end{equation}
\begin{example}
Letting $g\pqty{t}=e^{-t},a=0,b=\infty$, the complex iterated derivative of the gamma function is found where $z\in\mathbb{C}\land -z\not\in\mathbb{Z}^+$:
\begin{equation}
\Gamma\pqty{z+1} = \int_{0}^{\infty}e^{-t}t^z dt
\Rightarrow
\int_{0}^{\infty}e^{-t}\ln\pqty{t}^m t^z dt\in\Cid\pqty{\Gamma\pqty{z+1}}
\end{equation}
\end{example}
\section{Relation to earlier work}
Where \(n\in\mathbb{Z}^+\land z\in\mathbb{C}\):
\begin{equation}
\cidrues_n\pqty{0,z}=
\rues_n\pqty{z}=
\sum_{k=0}^{\infty}\frac{z^{nk}}{\pqty{nk}!}=
\frac{1}{n}\sum _{k=1}^n \exp\pqty{ze^{2ki\pi/n}}
\end{equation}
The reason these functions are named $\cidrues_n$ is because it is an acronym for Complex Iterated Derivative Root of Unity Exponential Sum function.
\begin{definition}
Where $n\in\mathbb{Z}^+,\Bqty{m,z}\subset\mathbb{C}$:
\begin{equation}
\label{cidrues Exponential sum form}
\cidrues_n\pqty{m,z}=
\frac{1}{n}\sum _{k=1}^n \exp\pqty{ze^{2ki\pi/n}+2mki\pi/n}
\in\Cid\pqty{\rues_n\pqty{z}}
\end{equation}
\end{definition}
The functions are periodic:
\begin{equation}
\cidrues_n\pqty{m,x}=\cidrues_n\pqty{m+n,x}
\end{equation}
Thus there exists some functions $c_{n,k}\pqty{m}$ relatively constant to $z$ such that
\begin{equation}
\cidrues_n\pqty{m,z}=\sum_{k=0}^{n-1}c_{n,k}\pqty{m}\cidrues_n\pqty{k,z}
\end{equation}
\end{document}