You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Apriori用于这个问题是参考这篇论文: Detecting and Localizing End-to-End Performance Degradation for Cellular Data Services Based on TCP Loss Ratio and Round Trip Time. 具体来说就是对所有的leaf attribute combination做一次异常检测, 然后用apriori算法去找attribute combination -> 异常这样的关联规则.
iDice整体问题是我们关注的问题的一个子问题, 还是适用的. 只是它里面的几个剪枝策略, 尤其是Impact based Pruning, 需要确认下是否和你具体用的数据适配. 比如如果不是#issues, 而是类似成功率这样的指标, 那Impact based Pruning很明显就不适用, 去掉就行了.
R-Adtributor就是递归调用adtributor, 我不太清楚你说的“不太容易得出形如A,B数据集这种形式的结果”具体指的是什么.
这些对比算法都没有开源的, 我就是按对论文的理解自己实现的, 也不能保证和作者的原始实现一样.
您好:
如题
IDice和Apriori似乎不是精准匹配这个问题,把这两个用过来似乎是不是需要一些特殊技巧;
R-Adtributer按照原本他论文的方法不太容易得出形如A,B数据集这种形式的结果;
HotSpot好像没有开源;
这些都在Squeeze论文里面计算出来了在A,B数据集上的f1-score。
请问下可否分享一下实现方式,或者开放代码。
The text was updated successfully, but these errors were encountered: