-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval.py
528 lines (432 loc) · 24.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import os
import cv2
import yaml
import pickle
import argparse
import importlib
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from src.utils.checkpoint import CheckPointer
from train import make_oxford_dataloader
from train import make_coco_dataloader
from train import make_cifar_dataloader
from train import make_flir_adas_dataloader
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
class ModelWrapper(torch.nn.Sequential):
def __init__(self, *args):
super(ModelWrapper, self).__init__(*args)
def predict_homography(self, data):
for idx, m in enumerate(self):
data = m.predict_homography(data)
return data
def destandardize(image, mean=0.443, std=0.129, tile=True, transpose=False):
image = ((image * std) + mean) * 255.
image = np.rint(image)
image[image > 255] = 255
image[image < 0] = 0
image = image.astype(np.uint8)
if transpose:
image = image.transpose((1, 2, 0))
if tile:
image = np.tile(image, (1, 1, 3))
return image
def draw_rect(image, corners, color='b', thickness=2):
# RGB space assumption
if color == 'r':
rgb = (255, 0, 0)
if color == 'g':
rgb = (0, 255, 0)
if color == 'b':
rgb = (0, 0, 255)
image = cv2.line(image, tuple(corners[0].astype(int)), tuple(corners[1].astype(int)), rgb, thickness)
image = cv2.line(image, tuple(corners[1].astype(int)), tuple(corners[2].astype(int)), rgb, thickness)
image = cv2.line(image, tuple(corners[2].astype(int)), tuple(corners[3].astype(int)), rgb, thickness)
image = cv2.line(image, tuple(corners[3].astype(int)), tuple(corners[0].astype(int)), rgb, thickness)
# return cv2.rectangle(image, tuple(corners[0].astype(int)), tuple(corners[2].astype(int)), rgb)
return image
def evaluate(model: torch.nn.Module, eval_dataloader: torch.utils.data.DataLoader, loss_fn: torch.nn.modules.loss._Loss,
device: str, patch_keys: list, self_supervised=False, visualize=False, postprocess=False, log_filepath=None):
###########################################################################
# Device setting
###########################################################################
if device == 'cuda' and torch.cuda.is_available():
if torch.cuda.device_count() > 1:
print('Using {} GPUs for training'.format(torch.cuda.device_count()))
print('Multiple GPUs detected. Using DataParallel mode.')
model = torch.nn.DataParallel(model)
model.to(device)
print('Model device: {}'.format(device))
###########################################################################
# Eval
###########################################################################
# Training phase
model.eval()
# Time measurement
model_start = torch.cuda.Event(enable_timing=True)
model_end = torch.cuda.Event(enable_timing=True)
model_time = []
postprocess_start = torch.cuda.Event(enable_timing=True)
postprocess_end = torch.cuda.Event(enable_timing=True)
postprocess_time = []
# Loop for the whole epoch
batched_mace = []
with torch.no_grad():
for iter, data in tqdm(enumerate(eval_dataloader), total=len(eval_dataloader)):
# S-COCO VISUALIZATION VALID INDICES:
# array([159, 630, 665, 1121, 1212, 1248, 1664, 1709, 1771, 2230, 2297])
# MEAN OF DIFFERENCES:
# array([0.71827478, 0.3781306 , 0.73596508, 0.31215266, 1.0124368 ,
# 0.49932163, 0.621531 , 0.96423396, 1.33473603, 0.72880919,
# 1.43505881])
# Best 3 indices: 1709, 1771, 2297
# move data to device
for key in data:
data[key] = data[key].to(device, dtype=torch.float)
# Get homography
model_start.record()
delta_hat, _ = model.predict_homography(data)
model_end.record()
torch.cuda.synchronize()
model_time.append(model_start.elapsed_time(model_end))
# Get ground truth
delta_gt = data['delta']
# print(iter, repr(delta_hat.detach().cpu().numpy()))
# if postprocess:
# postprocess_start.record()
# homography_refined, delta_hat_refined = model.postprocess(network_output)
# postprocess_end.record()
# postprocess_time.append(postprocess_start.elapsed_time(postprocess_end))
# torch.cuda.synchronize()
# delta_hat = delta_hat_refined
# Calc Mean Average Corner Error
if self_supervised:
if torch.is_tensor(delta_gt):
delta_gt = delta_gt.detach().cpu().numpy()
if torch.is_tensor(delta_hat):
delta_hat = delta_hat.detach().cpu().numpy()
mace = np.mean(np.linalg.norm(delta_gt.reshape(-1, 2) -
delta_hat.reshape(-1, 2), axis=-1))
if log_filepath is not None:
with open(log_filepath, 'a') as f:
f.write(str(iter) + ',' + str(mace) + '\n')
batched_mace.append(mace)
# #####################################################################
# Visualize warp
# #####################################################################
if visualize and self_supervised:
###############################################################
# Imports
###############################################################
import cv2
import matplotlib.pyplot as plt
batch_size = data['image_1'].shape[0]
for idx in range(batch_size):
###############################################################
# Retrieve data
###############################################################
image_1 = data['image_1'].detach().cpu().numpy()[idx]
image_2 = data['image_2'].detach().cpu().numpy()[idx]
patch_1 = data['patch_1'].detach().cpu().numpy()[idx]
patch_2 = data['patch_2'].detach().cpu().numpy()[idx]
corners = data['corners'].detach().cpu().numpy()[idx]
###############################################################
# Retrieve mask data if present
###############################################################
print(data.keys())
if 'patch_1_m' in data:
patch_1_m = data['patch_1_m'].detach().cpu().numpy()[idx]
patch_1_m = patch_1_m.transpose((1, 2, 0))
patch_1_m = np.tile(patch_1_m, (1, 1, 3))
if 'patch_2_m' in data:
patch_2_m = data['patch_2_m'].detach().cpu().numpy()[idx]
patch_2_m = patch_2_m.transpose((1, 2, 0))
patch_2_m = np.tile(patch_2_m, (1, 1, 3))
###############################################################
# Destandardize
###############################################################
image_1 = destandardize(image_1)
image_2 = destandardize(image_2)
patch_1 = destandardize(patch_1, transpose=True)
patch_2 = destandardize(patch_2, transpose=True)
image_vis = np.copy(image_2)
###############################################################
# Draw rects image
###############################################################
image_1 = draw_rect(image_1, corners, 'b')
image_2 = draw_rect(image_2, corners, 'b')
###############################################################
# Predicted homographies
###############################################################
corners_gt = corners - delta_gt[idx].reshape(4, 2)
image_vis = draw_rect(image_vis, corners_gt, 'b')
# # Orig arch output
# delta_orig = np.array([[-26.193892, -22.046888], [-24.314796, -1.6638668], [28.384571, -25.465956],
# [8.2527275, 4.8997808]])
# corners_orig = corners - delta_orig
# image_vis = draw_rect(image_vis, corners_orig, 'r')
# # AFM arch output
# delta_afm = np.array([[-28.005247, -23.422512], [-25.096855, -0.3967885], [26.155422, -25.632349],
# [8.992535, 5.0495477]])
# corners_afm = corners - delta_afm
# image_vis = draw_rect(image_vis, corners_afm, 'g')
# Orig arch output
corners_hat = corners - delta_hat[idx].reshape(-1, 2)
image_vis = draw_rect(image_vis, corners_hat, 'r')
###############################################################
# Show figure
###############################################################
# fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(1, 6, figsize=(40, 10))
# ax1.imshow(image_1)
# ax1.set_title('image_1')
# ax2.imshow(image_2)
# ax2.set_title('image_2')
# ax3.imshow(patch_1)
# ax3.set_title('patch_1')
# ax4.imshow(patch_2)
# ax4.set_title('patch_2')
# ax5.imshow(image_vis)
# ax5.set_title('image_vis')
# ax6.imshow(patch_1_m)
# ax6.set_title('patch_1_m')
# plt.show()
#
# cv2.imwrite('/data/output/daniel.koguciuk/temp/vis/{}_blob.png'.format(str(iter*batch_size + idx)),
# cv2.cvtColor(image_vis, cv2.COLOR_RGB2BGR))
###############################################################
# GIF: image 1 + image 2 + mask
###############################################################
import imageio
from src.data.utils import warp_image
from src.data.utils import four_point_to_homography
c = patch_1.shape[0]
corners = np.expand_dims(np.float32([[0, 0], [c, 0], [c, c], [0, c]]), axis=0)
homography = four_point_to_homography(corners=corners, deltas=delta_hat[idx].reshape(1, 4, 2),
crop=False)
warped = warp_image(patch_1, homography, target_h=c, target_w=c)
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(40, 10))
# ax1.imshow(patch_1)
# ax2.imshow(patch_2)
# ax3.imshow(warped)
# plt.show()
# Save output
gif_1_2_mask_path = '/data/output/daniel.koguciuk/temp/vis/{}_patch_1_2_mask_blob.gif'.format(
str(iter * batch_size + idx))
# Zhang
#imageio.mimsave(gif_1_2_mask_path, [warped, patch_2, patch_1_m], duration=0.5)
# Ours
patch_1_m_warped = warp_image(patch_1_m, homography, target_h=c, target_w=c)
imageio.mimsave(gif_1_2_mask_path, [warped, patch_2, patch_1_m_warped], duration=0.5)
np.save('/data/output/daniel.koguciuk/temp/vis/{}_warped.npy'.format(
str(iter * batch_size + idx)), warped)
np.save('/data/output/daniel.koguciuk/temp/vis/{}_patch_2.npy'.format(
str(iter * batch_size + idx)), patch_2)
np.save('/data/output/daniel.koguciuk/temp/vis/{}_mask_1.npy'.format(
str(iter * batch_size + idx)), patch_1_m_warped)
np.save('/data/output/daniel.koguciuk/temp/vis/{}_mask_2.npy'.format(
str(iter * batch_size + idx)), patch_2_m)
if 'pf' in data:
pf = data['pf'].detach().cpu().numpy()[idx]
pf = pf.transpose((1, 2, 0))
np.save('/data/output/daniel.koguciuk/temp/vis/{}_pf.npy'.format(
str(iter * batch_size + idx)), pf)
###############################################################
# Commented
###############################################################
# if torch.is_tensor(delta_gt):
# delta_gt = delta_gt.detach().cpu().numpy()
# if torch.is_tensor(delta_hat):
# delta_hat = delta_hat.detach().cpu().numpy()
#
# patch_1 = data[patch_keys[0]][0].detach().cpu().numpy().transpose((1, 2, 0))
# patch_2 = data[patch_keys[1]][0].detach().cpu().numpy().transpose((1, 2, 0))
#
# import cv2
# import matplotlib.pyplot as plt
# fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(40, 10))
# ax1.imshow(np.tile(patch_1, (1, 1, 3)))
# ax1.set_title('patch_1')
#
# # Patch 1 warped with delta_hat
# patch_size = patch_1.shape[0]
# mat = cv2.getPerspectiveTransform(np.float32([[0, 0], [patch_size, 0], [patch_size, patch_size],
# [0, patch_size]]),
# np.float32([[0, 0], [patch_size, 0], [patch_size, patch_size],
# [0, patch_size]]) + np.float32(delta_hat))
# inv_mat = np.linalg.inv(mat)
# patch_1_w = np.expand_dims(cv2.warpPerspective(patch_1, inv_mat, dsize=(patch_size, patch_size)), axis=-1)
# ax2.imshow(np.tile(patch_1_w, (1, 1, 3)))
# ax2.set_title('patch_1 warped_hat')
#
# # Patch 1 warped with delta_gt
# patch_size = patch_1.shape[0]
# mat = cv2.getPerspectiveTransform(np.float32([[0, 0], [patch_size, 0], [patch_size, patch_size],
# [0, patch_size]]),
# np.float32([[0, 0], [patch_size, 0], [patch_size, patch_size],
# [0, patch_size]]) + np.float32(delta_gt))
# inv_mat = np.linalg.inv(mat)
# patch_1_w = np.expand_dims(cv2.warpPerspective(patch_1, inv_mat, dsize=(patch_size, patch_size)), axis=-1)
# ax3.imshow(np.tile(patch_1_w, (1, 1, 3)))
# ax3.set_title('patch_1 warped_gt')
#
# ax4.imshow(np.tile(patch_2, (1, 1, 3)))
# ax4.set_title('patch_2')
# plt.show()
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Number of params: {}'.format(pytorch_total_params))
print("Mean mace: {}".format(np.mean(batched_mace)))
model_time = model_time[1:]
avg_model_time = np.mean(model_time)
print("Mean model time: {}".format(avg_model_time))
# if postprocess:
# postprocess_time = postprocess_time[1:]
# avg_postprocess_time = np.mean(postprocess_time)
# print("Mean postprocess time: {}".format(avg_postprocess_time))
def main(config_file_path: str, ckpt_file_path: str, batch_size: int, visualize=False, log_filepath=None):
# Load yaml config file
with open(config_file_path, 'r') as file:
config = yaml.full_load(file)
###########################################################################
# Make test data loader
###########################################################################
# Fix numpy seed
np.random.seed(config['DATA']['SAMPLER']['TEST_SEED'])
# Dataset fn
if 'oxford' in config['DATA']['NAME']:
make_dataloader_fn = make_oxford_dataloader
elif 'coco' in config['DATA']['NAME']:
make_dataloader_fn = make_coco_dataloader
elif 'cifar10' in config['DATA']['NAME']:
make_dataloader_fn = make_cifar_dataloader
elif 'flir_adas' in config['DATA']['NAME']:
make_dataloader_fn = make_flir_adas_dataloader
else:
assert False, 'I dont know this dataset yet.'
# Camera models root
camera_models_root = (os.path.join(BASE_DIR, config['DATA']['CAMERA_MODELS_ROOT']) if 'CAMERA_MODELS_ROOT' in
config['DATA'] is not None else None)
# Test cache
test_cache = config['DATA']['DATASET_TEST_CACHE'] if 'DATASET_TEST_CACHE' in config['DATA'] is not None else None
# Collator
collator_blob_porosity = config['DATA']['AUGMENT_BLOB_POROSITY'] if 'AUGMENT_BLOB_POROSITY' in config[
'DATA'] else None
collator_blobiness = config['DATA']['AUGMENT_BLOBINESS'] if 'AUGMENT_BLOBINESS' in config['DATA'] else None
# Data sampler mode
data_sampler_mode = config['DATA']['SAMPLER']['MODE'] if 'MODE' in config['DATA']['SAMPLER'] else None
data_sampler_frame_dist = config['DATA']['SAMPLER']['PAIR_MAX_FRAME_DIST'] if 'PAIR_MAX_FRAME_DIST'\
in config['DATA']['SAMPLER'] else None
# Eval dataloader
eval_dataloader = make_dataloader_fn(dataset_name=config['DATA']['NAME'],
dataset_root=os.path.join(BASE_DIR, config['DATA']['DATASET_ROOT']),
camera_models_root=camera_models_root,
split=os.path.join(BASE_DIR, config['DATA']['TEST_SPLIT']),
transforms=config['DATA']['TEST_TRANSFORM'],
batch_size=batch_size,
samples_per_epoch=config['DATA']['SAMPLER']['TEST_SAMPLES_PER_EPOCH'],
mode=data_sampler_mode,
pair_max_frame_dist=data_sampler_frame_dist,
num_workers=config['DATA']['NUM_WORKERS'],
random_seed=config['DATA']['SAMPLER']['TEST_SEED'],
cache_path=test_cache,
collator_patch_1=config['MODEL']['BACKBONE']['PATCH_KEYS'][0],
collator_patch_2=config['MODEL']['BACKBONE']['PATCH_KEYS'][1],
collator_blob_porosity=collator_blob_porosity,
collator_blobiness=collator_blobiness)
###########################################################################
# Data loaders pickling (for faster debugging)
###########################################################################
# with open('eval_dataloader.pkl', 'wb') as f:
# pickle.dump(eval_dataloader, f)
# exit()
# with open('eval_dataloader.pkl', 'rb') as f:
# eval_dataloader = pickle.load(f)
###########################################################################
# Import and create the model
###########################################################################
# Import model
backbone_module = importlib.import_module('src.backbones.{}'.format(config['MODEL']['BACKBONE']['NAME']))
backbone_class_to_call = getattr(backbone_module, 'Model')
# Create model class
backbone = backbone_class_to_call(**config['MODEL']['BACKBONE'])
###########################################################################
# Import and create the head
###########################################################################
# Import backbone
head_module = importlib.import_module('src.heads.{}'.format(config['MODEL']['HEAD']['NAME']))
head_class_to_call = getattr(head_module, 'Model')
# Create backbone class
head = head_class_to_call(backbone, **config['MODEL']['HEAD'])
###########################################################################
# Import and create the head
###########################################################################
model = ModelWrapper(backbone, head)
###########################################################################
# Create training elements
###########################################################################
# Training elements
if config['SOLVER']['OPTIMIZER'] == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=config['SOLVER']['LR'],
betas=(config['SOLVER']['MOMENTUM_1'], config['SOLVER']['MOMENTUM_2']))
else:
assert False, 'I do not have this solver implemented yet.'
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=config['SOLVER']['MILESTONES'],
gamma=config['SOLVER']['LR_DECAY'])
try:
loss_fn = getattr(torch.nn, config['SOLVER']['LOSS'])()
except:
loss_fn = config['SOLVER']['LOSS']
###########################################################################
# Checkpoint
###########################################################################
arguments = {"step": 0}
checkpointer = CheckPointer(model, optimizer, scheduler, config['LOGGING']['DIR'], True, None,
device=config['SOLVER']['DEVICE'])
extra_checkpoint_data = checkpointer.load(f=ckpt_file_path)
arguments.update(extra_checkpoint_data)
###########################################################################
# NORM OF WEIGHTS
###########################################################################
# def frob(arr):
# return np.sqrt(np.sum(np.square(np.abs(arr.reshape(-1)))))
#
# # Get feature extractor weigths
# print('Feature extractor:')
# fext_weights = model[0].feature_extractor.retrieve_weights()
# for key in fext_weights:
# print(key, fext_weights[key].shape)
# #if len(fext_weights[key].shape) == 4 or 'weight' not in key:
# #if len(fext_weights[key].shape) == 4 or 'weight' not in key:
# # continue
# print(key, ',', frob(fext_weights[key].cpu().detach().numpy()))
#
# print('ResNet:')
# fext_weights = model[0].retrieve_weights()
# for key in fext_weights:
# #print(key, fext_weights[key].shape)
# #if len(fext_weights[key].shape) == 4 or 'bn' not in key or 'weight' not in key:
# if len(fext_weights[key].shape) == 4:
# continue
# print(key, ',', frob(fext_weights[key].cpu().detach().numpy()))
#
# exit()
###########################################################################
# Do evaluate
###########################################################################
evaluate(model=model, eval_dataloader=eval_dataloader, loss_fn=loss_fn, device=config['SOLVER']['DEVICE'],
patch_keys=config['MODEL']['BACKBONE']['PATCH_KEYS'], visualize=visualize,
self_supervised=(data_sampler_mode is None or data_sampler_mode == 'single'),
postprocess=(config['MODEL']['BACKBONE']['NAME'] == 'Rethinking'),
log_filepath=log_filepath)
print('DONE!')
if __name__ == "__main__":
# params
parser = argparse.ArgumentParser()
parser.add_argument('--config_file', type=str, required=True, help='Config file with learning settings')
parser.add_argument('--ckpt', type=str, required=True, help='Model path')
parser.add_argument('--batch_size', type=int, required=False, default=1, help='Test batch size')
parser.add_argument('--vis', action='store_true', required=False, help='Should I produce visualization?')
parser.add_argument('--log', type=str, required=False, help='log filepath')
args = parser.parse_args()
# Call main
main(args.config_file, args.ckpt, args.batch_size, bool(args.vis), args.log)