forked from robertoostenveld/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_artifact_ecg.m
352 lines (320 loc) · 13.1 KB
/
ft_artifact_ecg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
function [cfg, artifact] = ft_artifact_ecg(cfg, data)
% FT_ARTIFACT_ECG performs a peak-detection on the ECG-channel and identifies the
% windows around the QRS peak as artifacts. Using FT_REJECTARTIFACT you can remove
% these windows from your data, or using FT_REMOVETEMPLATEARTIFACT you can subtract
% an averaged template artifact from your data.
%
% Use as
% [cfg, artifact] = ft_artifact_ecg(cfg)
% with the configuration options
% cfg.dataset = string with the filename
% or
% cfg.headerfile = string with the filename
% cfg.datafile = string with the filename
% and optionally
% cfg.headerformat
% cfg.dataformat
%
% Alternatively you can use it as
% [cfg, artifact] = ft_artifact_ecg(cfg, data)
% where the input data is a structure as obtained from FT_PREPROCESSING.
%
% In both cases the configuration should also contain
% cfg.trl = structure that defines the data segments of interest. See FT_DEFINETRIAL
% cfg.continuous = 'yes' or 'no' whether the file contains continuous data
% and
% cfg.artfctdef.ecg.channel = Nx1 cell-array with selection of channels, see FT_CHANNELSELECTION for details
% cfg.artfctdef.ecg.pretim = pre-artifact rejection interval in seconds (default = 0.05)
% cfg.artfctdef.ecg.psttim = post-artifact rejection interval in seconds (default = 0.3)
% cfg.artfctdef.ecg.cutoff = peak threshold (default = 3)
% cfg.artfctdef.ecg.inspect = Nx1 list of channels which will be shown as a QRS-locked average
%
% The output argument "artifact" is a Nx2 matrix comparable to the "trl" matrix of
% FT_DEFINETRIAL. The first column of which specifying the begin samples of an
% artifact period, the second column contains the end samples of the QRS periods.
%
% To facilitate data-handling and distributed computing, you can use
% cfg.inputfile = ...
% to read the input data from a *.mat file on disk. This mat files should contain
% only a single variable named 'data', corresponding to the input structure.
%
% See also FT_REJECTARTIFACT, FT_REMOVETEMPLATEARTIFACT, FT_ARTIFACT_CLIP, FT_ARTIFACT_ECG,
% FT_ARTIFACT_EOG, FT_ARTIFACT_JUMP, FT_ARTIFACT_MUSCLE, FT_ARTIFACT_THRESHOLD,
% FT_ARTIFACT_ZVALUE
% Copyright (C) 2005-2011, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble provenance
ft_preamble loadvar data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'datatype', 'continuous'});
cfg = ft_checkconfig(cfg, 'renamedval', {'continuous', 'continuous', 'yes'});
% set the default options
cfg.continuous = ft_getopt(cfg, 'continuous', []);
cfg.headerformat = ft_getopt(cfg, 'headerformat', []);
cfg.dataformat = ft_getopt(cfg, 'dataformat', []);
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.representation = ft_getopt(cfg, 'representation', 'numeric'); % numeric or table
% set the default artifact detection parameters
cfg.artfctdef = ft_getopt(cfg, 'artfctdef', []);
cfg.artfctdef.ecg = ft_getopt(cfg.artfctdef, 'ecg', []);
cfg.artfctdef.ecg.channel = ft_getopt(cfg.artfctdef.ecg, 'channel', {'ECG'});
cfg.artfctdef.ecg.method = ft_getopt(cfg.artfctdef.ecg, 'method', 'zvalue');
cfg.artfctdef.ecg.cutoff = ft_getopt(cfg.artfctdef.ecg, 'cutoff', 3);
cfg.artfctdef.ecg.padding = ft_getopt(cfg.artfctdef.ecg, 'padding', 0.5);
cfg.artfctdef.ecg.inspect = ft_getopt(cfg.artfctdef.ecg, 'inspect', {'MLT' 'MRT'});
cfg.artfctdef.ecg.pretim = ft_getopt(cfg.artfctdef.ecg, 'pretim', 0.05);
cfg.artfctdef.ecg.psttim = ft_getopt(cfg.artfctdef.ecg, 'psttim', 0.3);
cfg.artfctdef.ecg.mindist = ft_getopt(cfg.artfctdef.ecg, 'mindist', 0.5);
cfg.artfctdef.ecg.feedback = ft_getopt(cfg.artfctdef.ecg, 'feedback', 'yes');
if ~strcmp(cfg.artfctdef.ecg.method, 'zvalue')
ft_error('method "%s" is not applicable', cfg.artfctdef.ecg.method);
end
% the data is either passed into the function by the user or read from file with cfg.inputfile
hasdata = exist('data', 'var');
if ~hasdata
cfg = ft_checkconfig(cfg, 'dataset2files', 'yes');
cfg = ft_checkconfig(cfg, 'required', {'headerfile', 'datafile'});
hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat);
else
data = ft_checkdata(data, 'datatype', 'raw', 'hassampleinfo', 'yes');
cfg = ft_checkconfig(cfg, 'forbidden', {'dataset', 'headerfile', 'datafile'});
hdr = ft_fetch_header(data);
end
% set default cfg.continuous
if isempty(cfg.continuous)
if hdr.nTrials==1
cfg.continuous = 'yes';
else
cfg.continuous = 'no';
end
end
% get the specification of the data segments that should be scanned for artifacts
if ~isfield(cfg, 'trl') && hasdata
trl = data.sampleinfo;
for k = 1:numel(data.trial)
trl(k,3) = time2offset(data.time{k}, data.fsample);
end
elseif isfield(cfg, 'trl') && ischar(cfg.trl)
trl = loadvar(cfg.trl, 'trl');
elseif isfield(cfg, 'trl') && isnumeric(cfg.trl)
trl = cfg.trl;
else
ft_error('cannot determine which segments of data to scan for artifacts');
end
% get the remaining settings
artfctdef = cfg.artfctdef.ecg;
artfctdef.trl = trl;
artfctdef.demean = 'yes';
artfctdef.channel = ft_channelselection(artfctdef.channel, hdr.label);
chanindx = match_str(hdr.label, artfctdef.channel);
nchan = length(chanindx);
fltpadding = 0;
numtrl = size(trl,1);
if length(chanindx)<1
ft_error('no ECG channels selected');
elseif length(chanindx)>1
ft_error('only one ECG channel can be selected');
end
% these are the settings for filtering, rectifying, etc.
fltcfg = removefields(artfctdef, {'pretim', 'psttim', 'method', 'cutoff', 'inspect'});
ft_progress('init', cfg.feedback, ['searching for artifacts in ' num2str(nchan) ' channels']);
for trlop=1:numtrl
ft_progress(trlop/numtrl, 'searching in trial %d from %d\n', trlop, numtrl);
if hasdata
dat = ft_fetch_data(data, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'));
else
dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat);
end
if size(trl,2)>2
fltdata.time{trlop} = offset2time(trl(trlop,3), hdr.Fs, size(dat,2));
else
fltdata.time{trlop} = offset2time(0, hdr.Fs, size(dat,2));
end
fltdata.trial{trlop} = preproc(dat, artfctdef.channel, fltdata.time{trlop}, fltcfg, fltpadding, fltpadding);
fltdata.trial{trlop} = fltdata.trial{trlop}.^2;
end % for trlop
ft_progress('close');
tmp = cell2mat(fltdata.trial);
stmp = std(tmp, 0, 2);
mtmp = mean(tmp, 2);
Nsmp = max(trl(:,2));
trace = zeros(1, Nsmp);
% standardise the ecg
for trlop=1:numtrl
trace(trl(trlop,1):trl(trlop,2)) = (fltdata.trial{trlop}-mtmp)./stmp;
end
accept = strcmp(cfg.artfctdef.ecg.feedback, 'no');
while accept == 0
h = figure;
plot(trace);zoom;
hold on;
plot([1 Nsmp], [artfctdef.cutoff artfctdef.cutoff], 'r:');
hold off;
xlabel('samples');
ylabel('zscore');
fprintf(['\ncurrent %s threshold = %1.3f'], artfctdef.method, artfctdef.cutoff);
response = input('\nkeep the current value (y/n) ?\n', 's');
switch response
case 'n'
oldcutoff = artfctdef.cutoff;
artfctdef.cutoff = input('\nenter new value \n');
case 'y'
oldcutoff = artfctdef.cutoff;
accept = 1;
otherwise
ft_warning('unrecognised response, assuming no');
oldcutoff = artfctdef.cutoff;
artfctdef.cutoff = input('\nenter new value \n');
end
close
end
% detect peaks which are at least half a second apart and store
% the indices of the qrs-complexes in the artifact-configuration
mindist = round(cfg.artfctdef.ecg.mindist.*hdr.Fs);
[pindx, pval] = peakdetect2(trace, artfctdef.cutoff, mindist);
%sel = find(standardise(pval,2)<2);
%pindx = pindx(sel);
%pval = pval(sel);
artfctdef.qrs = pindx;
% create a trial around each QRS peak
trl = [];
trl(:,1) = pindx(:) - round(artfctdef.padding*(hdr.Fs)) ;
trl(:,2) = pindx(:) + round(artfctdef.padding*(hdr.Fs))-1;
trl(:,3) = -round(artfctdef.padding*(hdr.Fs));
trl(trl(:,1)<1,:) = [];
trl(trl(:,2)>hdr.nSamples.*hdr.nTrials,:) = [];
% ---------------------
% compute a QRS-triggered average
% FIXME, at present this only works for continuous data: the assumption can be made that all trials are equally long.
sgn = ft_channelselection(artfctdef.inspect, hdr.label);
megind = match_str(hdr.label, sgn);
chanindx = [megind(:); chanindx];
dat = zeros(length(chanindx), trl(1,2)-trl(1,1)+1);
numtrl = size(trl,1);
if ~isempty(chanindx)
ntrlok = 0;
for trlop=1:numtrl
if ~hasdata
fprintf('reading and preprocessing heartbeat %d of %d\n', trlop, numtrl);
dum = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat);
dat = dat + ft_preproc_baselinecorrect(dum);
ntrlok = ntrlok + 1;
elseif hasdata
fprintf('preprocessing heartbeat %d of %d\n', trlop, numtrl);
dum = ft_fetch_data(data, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'), 'docheck', 0);
if any(~isfinite(dum(:)))
% do not add this segment to the sum
else
dat = dat + ft_preproc_baselinecorrect(dum);
ntrlok = ntrlok + 1;
end
end
end
end
dat = dat./ntrlok;
time = offset2time(trl(1,3), hdr.Fs, size(dat,2));
tmp = dat(1:end-1,:);
mdat = max(abs(tmp(:)));
acceptpre = strcmp(cfg.artfctdef.ecg.feedback, 'no');
acceptpst = strcmp(cfg.artfctdef.ecg.feedback, 'no');
while acceptpre == 0 || acceptpst == 0
h = figure;
subplot(2,1,1); plot(time, dat(end, :));
abc = axis;
axis([time(1) time(end) abc(3:4)]);
subplot(2,1,2);
axis([time(1) time(end) -1.1*mdat 1.1*mdat]);
xpos = -artfctdef.pretim;
ypos = -1.05*mdat;
width = artfctdef.pretim + artfctdef.psttim;
height = 2.1*mdat;
rectangle('Position', [xpos ypos width height], 'FaceColor', 'r');
hold on; plot(time, dat(1:end-1, :), 'b');
if acceptpre == 0
fprintf(['\ncurrent pre-peak interval = %1.3f'], artfctdef.pretim);
response = input('\nkeep the current value (y/n) ?\n', 's');
switch response
case 'n'
oldpretim = artfctdef.pretim;
artfctdef.pretim = input('\nenter new value \n');
case 'y'
oldpretim = artfctdef.pretim;
acceptpre = 1;
otherwise
ft_warning('unrecognised response, assuming no');
oldpretim = artfctdef.pretim;
end
end
if acceptpst == 0 && acceptpre == 1
fprintf(['\ncurrent post-peak interval = %1.3f'], artfctdef.psttim);
response = input('\nkeep the current value (y/n) ?\n', 's');
switch response
case 'n'
oldpsttim = artfctdef.psttim;
artfctdef.psttim = input('\nenter new value \n');
case 'y'
oldpsttim = artfctdef.psttim;
acceptpst = 1;
otherwise
ft_warning('unrecognised response, assuming no');
oldpsttim = artfctdef.psttim;
end
end
close
end
artifact(:,1) = trl(:,1) - trl(:,3) - round(artfctdef.pretim*hdr.Fs);
artifact(:,2) = trl(:,1) - trl(:,3) + round(artfctdef.psttim*hdr.Fs);
if strcmp(cfg.representation, 'numeric') && istable(artifact)
if isempty(artifact)
% an empty table does not have columns
artifact = zeros(0,2);
else
% convert the table to a numeric array with the columns begsample and endsample
artifact = table2array(artifact(:,1:2));
end
elseif strcmp(cfg.representation, 'table') && isnumeric(artifact)
if isempty(artifact)
% an empty table does not have columns
artifact = table();
else
% convert the numeric array to a table with the columns begsample and endsample
begsample = artifact(:,1);
endsample = artifact(:,2);
artifact = table(begsample, endsample);
end
end
% remember the details that were used here and store the detected artifacts
cfg.artfctdef.ecg = artfctdef;
cfg.artfctdef.ecg.artifact = artifact;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble provenance
ft_postamble previous data
ft_postamble savevar