forked from DeepLabCut/DeepLabCut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestscript_cli.py
194 lines (154 loc) · 5.51 KB
/
testscript_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
modified from: https://github.com/DeepLabCut/DeepLabCut-core/testscript_cli.py
by Mackenzie.
DEVELOPERS:
This script tests various functionalities in an automatic way.
It produces nothing of interest scientifically.
"""
task = "Testcore" # Enter the name of your experiment Task
scorer = "Mackenzie" # Enter the name of the experimenter/labeler
import os, subprocess, sys
# def install(package):
# subprocess.check_call([sys.executable, "-m", "pip", "install", package])
# install("tensorflow==1.13.1")
import deeplabcut as dlc
from pathlib import Path
import pandas as pd
import numpy as np
import platform
print("Imported DLC!")
basepath = os.path.dirname(os.path.abspath("testscript_cli.py"))
videoname = "reachingvideo1"
video = [
os.path.join(
basepath,
"examples",
"Reaching-Mackenzie-2018-08-30",
"videos",
videoname + ".avi",
)
]
# For testing a color video:
# videoname='baby4hin2min'
# video=[os.path.join('/home/alex/Desktop/Data',videoname+'.mp4')]
# to test destination folder:
# dfolder=basepath
print(video)
dfolder = None
net_type = "resnet_50" #'mobilenet_v2_0.35' #'resnet_50'
augmenter_type = "default"
augmenter_type2 = "imgaug"
if platform.system() == "Darwin" or platform.system() == "Windows":
print("On Windows/OSX tensorpack is not tested by default.")
augmenter_type3 = "imgaug"
else:
augmenter_type3 = "tensorpack" # Does not work on WINDOWS
numiter = 3
print("CREATING PROJECT")
path_config_file = dlc.create_new_project(task, scorer, video, copy_videos=True)
cfg = dlc.auxiliaryfunctions.read_config(path_config_file)
cfg["numframes2pick"] = 5
cfg["pcutoff"] = 0.01
cfg["TrainingFraction"] = [0.8]
cfg["skeleton"] = [["bodypart1", "bodypart2"], ["bodypart1", "bodypart3"]]
dlc.auxiliaryfunctions.write_config(path_config_file, cfg)
print("EXTRACTING FRAMES")
dlc.extract_frames(path_config_file, mode="automatic", userfeedback=False)
print("CREATING SOME LABELS FOR THE FRAMES")
frames = os.listdir(os.path.join(cfg["project_path"], "labeled-data", videoname))
# As this next step is manual, we update the labels by putting them on the diagonal (fixed for all frames)
for index, bodypart in enumerate(cfg["bodyparts"]):
columnindex = pd.MultiIndex.from_product(
[[scorer], [bodypart], ["x", "y"]], names=["scorer", "bodyparts", "coords"]
)
frame = pd.DataFrame(
100 + np.ones((len(frames), 2)) * 50 * index,
columns=columnindex,
index=[os.path.join("labeled-data", videoname, fn) for fn in frames],
)
if index == 0:
dataFrame = frame
else:
dataFrame = pd.concat([dataFrame, frame], axis=1)
dataFrame.to_csv(
os.path.join(
cfg["project_path"],
"labeled-data",
videoname,
"CollectedData_" + scorer + ".csv",
)
)
dataFrame.to_hdf(
os.path.join(
cfg["project_path"],
"labeled-data",
videoname,
"CollectedData_" + scorer + ".h5",
),
"df_with_missing",
format="table",
mode="w",
)
print("Plot labels...")
dlc.check_labels(path_config_file)
print("CREATING TRAININGSET")
dlc.create_training_dataset(
path_config_file, net_type=net_type, augmenter_type=augmenter_type
)
posefile = os.path.join(
cfg["project_path"],
"dlc-models/iteration-"
+ str(cfg["iteration"])
+ "/"
+ cfg["Task"]
+ cfg["date"]
+ "-trainset"
+ str(int(cfg["TrainingFraction"][0] * 100))
+ "shuffle"
+ str(1),
"train/pose_cfg.yaml",
)
DLC_config = dlc.auxiliaryfunctions.read_plainconfig(posefile)
DLC_config["save_iters"] = numiter
DLC_config["display_iters"] = 2
DLC_config["multi_step"] = [[0.001, numiter]]
print("CHANGING training parameters to end quickly!")
dlc.auxiliaryfunctions.write_plainconfig(posefile, DLC_config)
print("TRAIN")
dlc.train_network(path_config_file)
print("EVALUATE")
dlc.evaluate_network(path_config_file, plotting=True)
videotest = os.path.join(cfg["project_path"], "videos", videoname + ".avi")
print(videotest)
# quicker variant
"""
print("VIDEO ANALYSIS")
dlc.analyze_videos(path_config_file, [videotest], save_as_csv=True)
print("CREATE VIDEO")
dlc.create_labeled_video(path_config_file,[videotest], save_frames=False)
print("Making plots")
dlc.plot_trajectories(path_config_file,[videotest])
print("CREATING TRAININGSET 2")
dlc.create_training_dataset(path_config_file, Shuffles=[2],net_type=net_type,augmenter_type=augmenter_type2)
cfg=dlc.auxiliaryfunctions.read_config(path_config_file)
posefile=os.path.join(cfg['project_path'],'dlc-models/iteration-'+str(cfg['iteration'])+'/'+ cfg['Task'] + cfg['date'] + '-trainset' + str(int(cfg['TrainingFraction'][0] * 100)) + 'shuffle' + str(2),'train/pose_cfg.yaml')
DLC_config=dlc.auxiliaryfunctions.read_plainconfig(posefile)
DLC_config['save_iters']=numiter
DLC_config['display_iters']=1
DLC_config['multi_step']=[[0.001,numiter]]
print("CHANGING training parameters to end quickly!")
dlc.auxiliaryfunctions.write_config(posefile,DLC_config)
print("TRAIN")
dlc.train_network(path_config_file, shuffle=2,allow_growth=True)
print("EVALUATE")
dlc.evaluate_network(path_config_file,Shuffles=[2],plotting=False)
print("ANALYZING some individual frames")
dlc.analyze_time_lapse_frames(path_config_file,os.path.join(cfg['project_path'],'labeled-data/reachingvideo1/'))
"""
print("Export model...")
dlc.export_model(path_config_file, shuffle=1, make_tar=False)
print(
"ALL DONE!!! - default/imgaug cases of DLCcore training and evaluation are functional (no extract outlier or refinement tested)."
)