-
Notifications
You must be signed in to change notification settings - Fork 16
/
train.py
executable file
·205 lines (157 loc) · 7.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import os
import yaml
import torch
import torch.nn as nn
from tqdm import tqdm
torch.cuda.is_available()
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR, LambdaLR, CosineAnnealingLR, StepLR
import datasets
import models
import utils
from test import eval_psnr, batched_predict
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def make_data_loader(spec, tag=''):
if spec is None:
return None
dataset = datasets.make(spec['dataset'])
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
log('{} dataset: size={}'.format(tag, len(dataset)))
for k, v in dataset[0].items():
log(' {}: shape={}'.format(k, tuple(v.shape)))
loader = DataLoader(dataset, batch_size=spec['batch_size'],
shuffle=(tag == 'train'), num_workers=8, pin_memory=True)
return loader
def make_data_loaders():
train_loader = make_data_loader(config.get('train_dataset'), tag='train')
val_loader = make_data_loader(config.get('val_dataset'), tag='val')
return train_loader, val_loader
def prepare_training():
if config.get('resume') is not None:
sv_file = torch.load(config['resume'])
model = models.make(sv_file['model'], load_sd=True).cuda()
optimizer = utils.make_optimizer(
model.parameters(), sv_file['optimizer'], load_sd=True)
epoch_start = sv_file['epoch'] + 1
else:
model = models.make(config['model']).cuda()
optimizer = utils.make_optimizer(
model.parameters(), config['optimizer'])
epoch_start = 1
max_epoch = config.get('epoch_max')
lr_scheduler = CosineAnnealingLR(optimizer, max_epoch, eta_min=1e-6)
log('model: #params={}'.format(utils.compute_num_params(model, text=True)))
return model, optimizer, epoch_start, lr_scheduler
def train(train_loader, model, optimizer):
model.train()
train_loss_G = utils.Averager()
for batch in tqdm(train_loader, leave=False, desc='train'):
for k, v in batch.items():
batch[k] = v.cuda()
inp = batch['inp']
gt = batch['gt']
model.set_input(inp, gt)
model.optimize_parameters()
train_loss_G.add(model.loss_G.item())
return train_loss_G.item()
def main(config_, save_path):
global config, log, writer
config = config_
log, writer = utils.set_save_path(save_path, remove=False)
with open(os.path.join(save_path, 'config.yaml'), 'w') as f:
yaml.dump(config, f, sort_keys=False)
train_loader, val_loader = make_data_loaders()
if config.get('data_norm') is None:
config['data_norm'] = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
model, optimizer, epoch_start, lr_scheduler = prepare_training()
model.optimizer = optimizer
lr_scheduler = CosineAnnealingLR(model.optimizer, config['epoch_max'], eta_min=1e-6)
n_gpus = len(os.environ['CUDA_VISIBLE_DEVICES'].split(','))
if n_gpus > 1:
model = nn.parallel.DataParallel(model)
epoch_max = config['epoch_max']
epoch_val = config.get('epoch_val')
epoch_save = config.get('epoch_save')
# max_val_v = -1e18
max_val_v = -1e18 if config['eval_type'] != 'ber' else 1e8
timer = utils.Timer()
for epoch in range(epoch_start, epoch_max + 1):
t_epoch_start = timer.t()
log_info = ['epoch {}/{}'.format(epoch, epoch_max)]
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch)
train_loss_G = train(train_loader, model, optimizer)
lr_scheduler.step()
log_info.append('train G: loss={:.4f}'.format(train_loss_G))
writer.add_scalars('loss', {'train G': train_loss_G}, epoch)
if n_gpus > 1:
model_ = model.module
else:
model_ = model
model_spec = config['model']
model_spec['sd'] = model_.state_dict()
optimizer_spec = config['optimizer']
optimizer_spec['sd'] = optimizer.state_dict()
save(config, model, save_path, 'last')
if (epoch_val is not None) and (epoch % epoch_val == 0):
if n_gpus > 1 and (config.get('eval_bsize') is not None):
model_ = model.module
else:
model_ = model
metric1, metric2, metric3, metric4 = eval_psnr(val_loader, model_,
data_norm=config['data_norm'],
eval_type=config.get('eval_type'),
eval_bsize=config.get('eval_bsize'))
log_info.append('val: f1={:.4f}'.format(metric1))
writer.add_scalars('f1', {'val': metric1}, epoch)
log_info.append('val: auc={:.4f}'.format(metric2))
writer.add_scalars('auc', {'val': metric2}, epoch)
log_info.append('val: metric3={:.4f}'.format(metric3))
writer.add_scalars('metric3', {'val': metric3}, epoch)
log_info.append('val: metric4={:.4f}'.format(metric4))
writer.add_scalars('metric4', {'val': metric4}, epoch)
if config['eval_type'] != 'ber':
if metric1 > max_val_v:
max_val_v = metric1
save(config, model, save_path, 'best')
else:
if metric3 < max_val_v:
max_val_v = metric3
save(config, model, save_path, 'best')
t = timer.t()
prog = (epoch - epoch_start + 1) / (epoch_max - epoch_start + 1)
t_epoch = utils.time_text(t - t_epoch_start)
t_elapsed, t_all = utils.time_text(t), utils.time_text(t / prog)
log_info.append('{} {}/{}'.format(t_epoch, t_elapsed, t_all))
log(', '.join(log_info))
writer.flush()
def save(config, model, save_path, name):
if config['model']['name'] == 'segformer' or config['model']['name'] == 'setr':
if config['model']['args']['encoder_mode']['name'] == 'evp':
prompt_generator = model.encoder.backbone.prompt_generator.state_dict()
decode_head = model.encoder.decode_head.state_dict()
torch.save({"prompt": prompt_generator, "decode_head": decode_head},
os.path.join(save_path, f"prompt_epoch_{name}.pth"))
else:
torch.save(model.encoder.state_dict(), os.path.join(save_path, f"model_epoch_{name}.pth"))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config')
parser.add_argument('--name', default=None)
parser.add_argument('--tag', default=None)
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print('config loaded.')
save_name = args.name
if save_name is None:
save_name = '_' + args.config.split('/')[-1][:-len('.yaml')]
if args.tag is not None:
save_name += '_' + args.tag
save_path = os.path.join('./save', save_name)
main(config, save_path)