forked from kamalesh0406/Audio-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
61 lines (53 loc) · 1.57 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import shutil
import json
import os
import torch
import torch.nn as nn
class Params():
def __init__(self, json_path):
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
def save(self, json_path):
with open(json_path, 'w') as f:
params = json.dump(self.__dict__, f, indent=4)
def update(self, json_path):
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
@property
def dict(self):
return self.__dict__
class RunningAverage():
def __init__(self):
self.total = 0
self.steps = 0
def update(self, loss):
self.total += loss
self.steps += 1
def __call__(self):
return (self.total/float(self.steps))
def save_checkpoint(state, is_best, split, checkpoint):
filename = os.path.join(checkpoint, 'last{}.pth.tar'.format(split))
if not os.path.exists(checkpoint):
print("Checkpoint Directory does not exist")
os.mkdir(checkpoint)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(checkpoint, "model_best_{}.pth.tar".format(split)))
def load_checkpoint(checkpoint, model, optimizer=None, parallel=False):
if not os.path.exists(checkpoint):
raise("File Not Found Error {}".format(checkpoint))
checkpoint = torch.load(checkpoint)
if parallel:
model.module.load_state_dict(checkpoint["model"])
else:
model.load_state_dict(checkpoint["model"])
if optimizer:
optimizer.load_state_dict(checkpoint["optimizer"])
return checkpoint
def initialize_weights(m):
classname = m.__class__.__name__
print(classname)
if classname.find('Linear') != -1:
nn.init.ones_(m.weight.data)