-
Notifications
You must be signed in to change notification settings - Fork 0
/
spectral_embedding_.py
610 lines (516 loc) · 23.8 KB
/
spectral_embedding_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
"""Spectral Embedding"""
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Wei LI <kuantkid@gmail.com>
# License: BSD 3 clause
import warnings
import numpy as np
from scipy import sparse
from scipy.linalg import eigh
from scipy.sparse.linalg import lobpcg
from ..base import BaseEstimator
from ..externals import six
from ..utils import check_random_state, check_array, check_symmetric
from ..utils.extmath import _deterministic_vector_sign_flip
from ..utils.graph import graph_laplacian
from ..utils.sparsetools import connected_components
from ..utils.arpack import eigsh
from ..metrics.pairwise import rbf_kernel
from ..neighbors import kneighbors_graph
from math import sqrt
def _graph_connected_component(graph, node_id):
"""Find the largest graph connected components that contains one
given node
Parameters
----------
graph : array-like, shape: (n_samples, n_samples)
adjacency matrix of the graph, non-zero weight means an edge
between the nodes
node_id : int
The index of the query node of the graph
Returns
-------
connected_components_matrix : array-like, shape: (n_samples,)
An array of bool value indicating the indexes of the nodes
belonging to the largest connected components of the given query
node
"""
n_node = graph.shape[0]
if sparse.issparse(graph):
# speed up row-wise access to boolean connection mask
graph = graph.tocsr()
connected_nodes = np.zeros(n_node, dtype=np.bool)
nodes_to_explore = np.zeros(n_node, dtype=np.bool)
nodes_to_explore[node_id] = True
for _ in range(n_node):
last_num_component = connected_nodes.sum()
np.logical_or(connected_nodes, nodes_to_explore, out=connected_nodes)
if last_num_component >= connected_nodes.sum():
break
indices = np.where(nodes_to_explore)[0]
nodes_to_explore.fill(False)
for i in indices:
if sparse.issparse(graph):
neighbors = graph[i].toarray().ravel()
else:
neighbors = graph[i]
np.logical_or(nodes_to_explore, neighbors, out=nodes_to_explore)
return connected_nodes
def _graph_is_connected(graph):
""" Return whether the graph is connected (True) or Not (False)
Parameters
----------
graph : array-like or sparse matrix, shape: (n_samples, n_samples)
adjacency matrix of the graph, non-zero weight means an edge
between the nodes
Returns
-------
is_connected : bool
True means the graph is fully connected and False means not
"""
if sparse.isspmatrix(graph):
# sparse graph, find all the connected components
n_connected_components, _ = connected_components(graph)
return n_connected_components == 1
else:
# dense graph, find all connected components start from node 0
return _graph_connected_component(graph, 0).sum() == graph.shape[0]
def _set_diag(laplacian, value, norm_laplacian):
"""Set the diagonal of the laplacian matrix and convert it to a
sparse format well suited for eigenvalue decomposition
Parameters
----------
laplacian : array or sparse matrix
The graph laplacian
value : float
The value of the diagonal
norm_laplacian : bool
Whether the value of the diagonal should be changed or not
Returns
-------
laplacian : array or sparse matrix
An array of matrix in a form that is well suited to fast
eigenvalue decomposition, depending on the band width of the
matrix.
"""
n_nodes = laplacian.shape[0]
# We need all entries in the diagonal to values
if not sparse.isspmatrix(laplacian):
if norm_laplacian:
laplacian.flat[::n_nodes + 1] = value
else:
laplacian = laplacian.tocoo()
if norm_laplacian:
diag_idx = (laplacian.row == laplacian.col)
laplacian.data[diag_idx] = value
# If the matrix has a small number of diagonals (as in the
# case of structured matrices coming from images), the
# dia format might be best suited for matvec products:
n_diags = np.unique(laplacian.row - laplacian.col).size
if n_diags <= 7:
# 3 or less outer diagonals on each side
laplacian = laplacian.todia()
else:
# csr has the fastest matvec and is thus best suited to
# arpack
laplacian = laplacian.tocsr()
return laplacian
def spectral_embedding(adjacency, n_components=8, eigen_solver=None,
random_state=None, eigen_tol=0.0,
norm_laplacian=True, drop_first=True, return_eigenvalues = False):
"""Project the sample on the first eigenvectors of the graph Laplacian.
The adjacency matrix is used to compute a normalized graph Laplacian
whose spectrum (especially the eigenvectors associated to the
smallest eigenvalues) has an interpretation in terms of minimal
number of cuts necessary to split the graph into comparably sized
components.
This embedding can also 'work' even if the ``adjacency`` variable is
not strictly the adjacency matrix of a graph but more generally
an affinity or similarity matrix between samples (for instance the
heat kernel of a euclidean distance matrix or a k-NN matrix).
However care must taken to always make the affinity matrix symmetric
so that the eigenvector decomposition works as expected.
Read more in the :ref:`User Guide <spectral_embedding>`.
Parameters
----------
adjacency : array-like or sparse matrix, shape: (n_samples, n_samples)
The adjacency matrix of the graph to embed.
n_components : integer, optional, default 8
The dimension of the projection subspace.
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}, default None
The eigenvalue decomposition strategy to use. AMG requires pyamg
to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities.
random_state : int seed, RandomState instance, or None (default)
A pseudo random number generator used for the initialization of the
lobpcg eigenvectors decomposition when eigen_solver == 'amg'.
By default, arpack is used.
eigen_tol : float, optional, default=0.0
Stopping criterion for eigendecomposition of the Laplacian matrix
when using arpack eigen_solver.
drop_first : bool, optional, default=True
Whether to drop the first eigenvector. For spectral embedding, this
should be True as the first eigenvector should be constant vector for
connected graph, but for spectral clustering, this should be kept as
False to retain the first eigenvector.
norm_laplacian : bool, optional, default=True
If True, then compute normalized Laplacian.
Returns
-------
embedding : array, shape=(n_samples, n_components)
The reduced samples.
Notes
-----
Spectral embedding is most useful when the graph has one connected
component. If there graph has many components, the first few eigenvectors
will simply uncover the connected components of the graph.
References
----------
* https://en.wikipedia.org/wiki/LOBPCG
* Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method
Andrew V. Knyazev
http://dx.doi.org/10.1137%2FS1064827500366124
"""
adjacency = check_symmetric(adjacency)
try:
from pyamg import smoothed_aggregation_solver
except ImportError:
if eigen_solver == "amg":
raise ValueError("The eigen_solver was set to 'amg', but pyamg is "
"not available.")
if eigen_solver is None:
eigen_solver = 'arpack'
elif eigen_solver not in ('arpack', 'lobpcg', 'amg'):
raise ValueError("Unknown value for eigen_solver: '%s'."
"Should be 'amg', 'arpack', or 'lobpcg'"
% eigen_solver)
random_state = check_random_state(random_state)
n_nodes = adjacency.shape[0]
# Whether to drop the first eigenvector
if drop_first:
n_components = n_components + 1
if not _graph_is_connected(adjacency):
warnings.warn("Graph is not fully connected, spectral embedding"
" may not work as expected.")
laplacian, dd = graph_laplacian(adjacency,
normed=norm_laplacian, return_diag=True)
if (eigen_solver == 'arpack' or eigen_solver != 'lobpcg' and
(not sparse.isspmatrix(laplacian) or n_nodes < 5 * n_components)):
# lobpcg used with eigen_solver='amg' has bugs for low number of nodes
# for details see the source code in scipy:
# https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen
# /lobpcg/lobpcg.py#L237
# or matlab:
# http://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m
laplacian = _set_diag(laplacian, 1, norm_laplacian)
# Here we'll use shift-invert mode for fast eigenvalues
# (see http://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html
# for a short explanation of what this means)
# Because the normalized Laplacian has eigenvalues between 0 and 2,
# I - L has eigenvalues between -1 and 1. ARPACK is most efficient
# when finding eigenvalues of largest magnitude (keyword which='LM')
# and when these eigenvalues are very large compared to the rest.
# For very large, very sparse graphs, I - L can have many, many
# eigenvalues very near 1.0. This leads to slow convergence. So
# instead, we'll use ARPACK's shift-invert mode, asking for the
# eigenvalues near 1.0. This effectively spreads-out the spectrum
# near 1.0 and leads to much faster convergence: potentially an
# orders-of-magnitude speedup over simply using keyword which='LA'
# in standard mode.
try:
# We are computing the opposite of the laplacian inplace so as
# to spare a memory allocation of a possibly very large array
laplacian *= -1
v0 = random_state.uniform(-1, 1, laplacian.shape[0])
lambdas, diffusion_map = eigsh(laplacian, k=n_components,
sigma=1.0, which='LM',
tol=eigen_tol, v0=v0)
embedding = diffusion_map.T[n_components::-1] * dd
except RuntimeError:
# When submatrices are exactly singular, an LU decomposition
# in arpack fails. We fallback to lobpcg
eigen_solver = "lobpcg"
# Revert the laplacian to its opposite to have lobpcg work
laplacian *= -1
if eigen_solver == 'amg':
# Use AMG to get a preconditioner and speed up the eigenvalue
# problem.
if not sparse.issparse(laplacian):
warnings.warn("AMG works better for sparse matrices")
# lobpcg needs double precision floats
laplacian = check_array(laplacian, dtype=np.float64,
accept_sparse=True)
laplacian = _set_diag(laplacian, 1, norm_laplacian)
ml = smoothed_aggregation_solver(check_array(laplacian, 'csr'))
M = ml.aspreconditioner()
X = random_state.rand(laplacian.shape[0], n_components + 1)
X[:, 0] = dd.ravel()
lambdas, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.e-12,
largest=False)
embedding = diffusion_map.T * dd
if embedding.shape[0] == 1:
raise ValueError
elif eigen_solver == "lobpcg":
# lobpcg needs double precision floats
laplacian = check_array(laplacian, dtype=np.float64,
accept_sparse=True)
if n_nodes < 5 * n_components + 1:
# see note above under arpack why lobpcg has problems with small
# number of nodes
# lobpcg will fallback to eigh, so we short circuit it
if sparse.isspmatrix(laplacian):
laplacian = laplacian.toarray()
lambdas, diffusion_map = eigh(laplacian)
embedding = diffusion_map.T[:n_components] * dd
else:
laplacian = _set_diag(laplacian, 1, norm_laplacian)
# We increase the number of eigenvectors requested, as lobpcg
# doesn't behave well in low dimension
X = random_state.rand(laplacian.shape[0], n_components + 1)
X[:, 0] = dd.ravel()
lambdas, diffusion_map = lobpcg(laplacian, X, tol=1e-15,
largest=False, maxiter=2000)
embedding = diffusion_map.T[:n_components] * dd
if embedding.shape[0] == 1:
raise ValueError
embedding = _deterministic_vector_sign_flip(embedding)
if return_eigenvalues:
if drop_first:
return embedding[1:n_components].T, lambdas
else:
return embedding[:n_components].T, lambdas
else:
if drop_first:
return embedding[1:n_components].T
else:
return embedding[:n_components].T
class SpectralEmbedding(BaseEstimator):
"""Spectral embedding for non-linear dimensionality reduction.
Forms an affinity matrix given by the specified function and
applies spectral decomposition to the corresponding graph laplacian.
The resulting transformation is given by the value of the
eigenvectors for each data point.
Read more in the :ref:`User Guide <spectral_embedding>`.
Parameters
-----------
n_components : integer, default: 2
The dimension of the projected subspace.
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
The eigenvalue decomposition strategy to use. AMG requires pyamg
to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities.
random_state : int seed, RandomState instance, or None, default : None
A pseudo random number generator used for the initialization of the
lobpcg eigenvectors decomposition when eigen_solver == 'amg'.
affinity : string or callable, default : "nearest_neighbors"
How to construct the affinity matrix.
- 'nearest_neighbors' : construct affinity matrix by knn graph
- 'rbf' : construct affinity matrix by rbf kernel
- 'precomputed' : interpret X as precomputed affinity matrix
- callable : use passed in function as affinity
the function takes in data matrix (n_samples, n_features)
and return affinity matrix (n_samples, n_samples).
gamma : float, optional, default : 1/n_features
Kernel coefficient for rbf kernel.
n_neighbors : int, default : max(n_samples/10 , 1)
Number of nearest neighbors for nearest_neighbors graph building.
n_jobs : int, optional (default = 1)
The number of parallel jobs to run.
If ``-1``, then the number of jobs is set to the number of CPU cores.
Attributes
----------
embedding_ : array, shape = (n_samples, n_components)
Spectral embedding of the training matrix.
affinity_matrix_ : array, shape = (n_samples, n_samples)
Affinity_matrix constructed from samples or precomputed.
References
----------
- A Tutorial on Spectral Clustering, 2007
Ulrike von Luxburg
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
- On Spectral Clustering: Analysis and an algorithm, 2011
Andrew Y. Ng, Michael I. Jordan, Yair Weiss
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100
- Normalized cuts and image segmentation, 2000
Jianbo Shi, Jitendra Malik
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
"""
def __init__(self, n_components=2, affinity="nearest_neighbors",
gamma=None, random_state=None, eigen_solver=None,
n_neighbors=None, n_jobs=1):
self.n_components = n_components
self.affinity = affinity
self.gamma = gamma
self.random_state = random_state
self.eigen_solver = eigen_solver
self.n_neighbors = n_neighbors
self.n_jobs = n_jobs
self.embedding_ = None
@property
def _pairwise(self):
return self.affinity == "precomputed"
def _get_affinity_matrix(self, X, Y=None):
"""Calculate the affinity matrix from data
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples
and n_features is the number of features.
If affinity is "precomputed"
X : array-like, shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from
samples.
Returns
-------
affinity_matrix, shape (n_samples, n_samples)
"""
if self.affinity == 'precomputed':
self.affinity_matrix_ = X
return self.affinity_matrix_
if self.affinity == 'nearest_neighbors':
if sparse.issparse(X):
warnings.warn("Nearest neighbors affinity currently does "
"not support sparse input, falling back to "
"rbf affinity")
self.affinity = "rbf"
else:
self.n_neighbors_ = (self.n_neighbors
if self.n_neighbors is not None
else max(int(X.shape[0] / 10), 1))
self.affinity_matrix_ = kneighbors_graph(X, self.n_neighbors_,
include_self=True,
n_jobs=self.n_jobs)
# currently only symmetric affinity_matrix supported
self.affinity_matrix_ = 0.5 * (self.affinity_matrix_ +
self.affinity_matrix_.T)
return self.affinity_matrix_
if self.affinity == 'rbf':
self.gamma_ = (self.gamma
if self.gamma is not None else 1.0 / X.shape[1])
self.affinity_matrix_ = rbf_kernel(X, gamma=self.gamma_)
return self.affinity_matrix_
self.affinity_matrix_ = self.affinity(X)
return self.affinity_matrix_
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples
and n_features is the number of features.
If affinity is "precomputed"
X : array-like, shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from
samples.
Returns
-------
self : object
Returns the instance itself.
"""
X = check_array(X, ensure_min_samples=2, estimator=self)
random_state = check_random_state(self.random_state)
if isinstance(self.affinity, six.string_types):
if self.affinity not in set(("nearest_neighbors", "rbf",
"precomputed")):
raise ValueError(("%s is not a valid affinity. Expected "
"'precomputed', 'rbf', 'nearest_neighbors' "
"or a callable.") % self.affinity)
elif not callable(self.affinity):
raise ValueError(("'affinity' is expected to be an affinity "
"name or a callable. Got: %s") % self.affinity)
affinity_matrix = self._get_affinity_matrix(X)
#print(affinity_matrix)
#self.e_over_affinity_matrix = np.average(affinity_matrix, axis=0)
self.embedding_, self.eigenvalues = spectral_embedding(affinity_matrix,
n_components=self.n_components,
eigen_solver=self.eigen_solver,
random_state=random_state,
return_eigenvalues=True)
self.empirical_data = X
return self
def fit_transform(self, X, y=None):
"""Fit the model from data in X and transform X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples
and n_features is the number of features.
If affinity is "precomputed"
X : array-like, shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from
samples.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
self.fit(X)
return self.embedding_
def transform(self, X):
"""
Transform new points into embedding space.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X_new : array, shape = [n_samples, n_components]
Notes
-----
"""
X = check_array(X)
old_data_n_samples = self.empirical_data.shape[0]
new_data_n_samples = X.shape[0]
K = kneighbors_graph(np.concatenate((self.empirical_data, X)), self.n_neighbors_,
include_self=True,
n_jobs=self.n_jobs)
# currently only symmetric affinity_matrix supported
K = ((K + K.T) * 0.5)
K = K[:old_data_n_samples, :]
e_over_K = np.asarray(K.mean(axis=0))[0]
sne_over_K = np.sqrt(e_over_K[old_data_n_samples:])
e_over_K = np.diag(1/np.sqrt(e_over_K[:old_data_n_samples]))
K = K[:, old_data_n_samples:].toarray()
X_new = np.zeros((new_data_n_samples, self.n_components))
for i in range(new_data_n_samples):
K[:,i] = np.dot(e_over_K, K[:,i])
X_new = np.dot(np.transpose(K), self.embedding_) / old_data_n_samples
for k in range(self.n_components):
X_new[:,k] /= sne_over_K \
#* self.eigenvalues[k] #Was the paper author wrong?
return X_new
def inverse_transform(self, X):
"""
Transform points into default space.
Parameters
----------
X : array-like, shape = [n_samples, n_components]
Returns
-------
X_new : array, shape = [n_samples, n_features]
Notes
-----
"""
X = check_array(X)
new_data_n_samples = X.shape[0]
n_features = self.empirical_data.shape[1]
if self.embedding_ == None:
print("I can't do this inverse transform")
return np.zeros((new_data_n_samples, n_features))
old_data_n_samples = self.embedding_.shape[0]
K = kneighbors_graph(np.concatenate((self.embedding_, X)), self.n_neighbors_,
include_self=True,
n_jobs=self.n_jobs)
# currently only symmetric affinity_matrix supported
K = ((K + K.T) * 0.5)
K = K[:old_data_n_samples, :]
e_over_K = np.asarray(K.mean(axis=0))[0]
sne_over_K = np.sqrt(e_over_K[old_data_n_samples:])
e_over_K = np.diag(1/np.sqrt(e_over_K[:old_data_n_samples]))
K = K[:, old_data_n_samples:].toarray()
for i in range(new_data_n_samples):
K[:,i] = np.dot(e_over_K, K[:,i])
X_new = np.dot(np.transpose(K), self.empirical_data) / old_data_n_samples
for k in range(n_features):
X_new[:,k] /= sne_over_K \
#* self.eigenvalues[k] #Was the paper author wrong?
return X_new