-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathampitude_dropoff.m
853 lines (708 loc) · 25.7 KB
/
ampitude_dropoff.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
% 1D
%clear all
close all
%lon_pos = 30;
clear Hs Hs_nospread Hs_scattering Hs_adj
%lon_required = 90;
%cell_lon_idx = near1(lon(:,1),lon_required); % The cell with longitude closest to lon_required
% Parameters ----------------------------------------------------------------------------------------
tolice = 1.0e-2; % conc<tolice treated as zero ice
tolh = 1.0e-1; % h<tolh treated as zero ice
toli = 1.0e-16; % threshold for the propagation of waves
gravity = 9.80665;
puny = 1.0e-11;
length_transect = 10;
Hs_init = 6;
Tp_init = 10;
dir_spread = 1; % = 1, we are reading in CAWCR data
% 1. Intialise wave spectrum at wave_lat
nw = 31;
clear S_attn S_attn_nospread int_D S_attn_scattering
[S_init,omega,T] = SDF_Bretschneider(Hs_init,Tp_init,nw);
wavefreq = omega/(2*pi);
dwavefreq = wavefreq(1:end) - [0,wavefreq(1:end-1)];
4*sqrt(sum(S_init.*dwavew))
mwd = 0; % Mean wave direction, rad
thn = 31; % number of theta bins
n = 2.5; % Cosine exponent
if dir_spread == 1
[S_spread,D,theta_vec] = cosine_spreader(S_init,mwd,thn,n);
dtheta = theta_vec(1:end) - [0,theta_vec(1:end-1)];
S_attn(1,:) = S_spread;
S_attn_MBK(1,:) = S_spread;
S_attn_nospread(1,:) = S_init;
S_attn_scattering(1,:) = S_spread;
S_attn_adj = S_spread;
else
S_attn(1,:) = S_init;
end
% 2. Propagate the waves, sub_uncoupled
% increment_floe
%! !DESCRIPTION:
%!
%! Increase ice floe tracer by scaled timestep length.
% Length of cell, converting km to m
dwavew = dwavefreq.*(2*pi);
scatter_loc = 10;
n_points = 100;
dist = linspace(0,150,n_points); % In km
delta_dist = [dist - [0 dist(1:end-1)]];
%floe_size_vec = exp(0.05*(dist));
vert_translation = (850+1)/2;
horz_translation = 50;
amplitude = (850-1)/2;
%for lp_i=1:n_points
% floe_size_vec(lp_i) = amplitude*tanh(0.001*(lp_i-horz_translation)) + vert_translation;
%end
%floe_size_vec = 850./(1 + exp(-0.001*x_vec));
floe_size_vec = 850./(1 + exp(-0.1*dist+10));
aice_vec = 0.95./(1 + exp(-0.1*dist+5));
%figure
%plot(dist,floe_size_vec)
%
flg_amp_drop = zeros(1,length(omega));
for i = 1:n_points
conc = aice_vec(i);
hice = 1.0;
floe_size = floe_size_vec(i);% Radius, m
Lcell = delta_dist(i).*1000; % initialise propagation length
if conc < tolice
% As there is no ice, apply no attenuation
S_attn(i+1,:) = S_attn(i,:);
S_attn_MBK(i+1,:) = S_attn_MBK(i,:);
elseif conc > tolice % Attenuate
% Amplitude drop check
for om_i = 1:length(omega)
if flg_amp_drop(om_i) == 0
T = (2*pi)./omega(om_i);
lambda = (gravity*(T.^2))/(2*pi); % Wave lengths
if conc > 0.1 && lambda <= 2*floe_size
% Unbroken ice, apply the amplitude drop-off
if flg_amp_drop(om_i) == 0
disp('Scatter')
disp(lambda)
disp(floe_size)
%[S_attn(i,:) ] = amplitude_dropoff(S_attn(i,:),omega,floe_size);
S_attn(i,om_i) = 0.5*S_attn(i,om_i);
flg_amp_drop(om_i) = 1;
scatter_loc(om_i) = i;
end
%S_attn(i+1,:) = wave_attenuation(conc,Lcell,nw,S_attn(i,:),omega,"adjusted",floe_size);
end
else
% Broken ice, no drop-off
S_attn(i,om_i) = S_attn(i,om_i);
end
end
S_attn(i+1,:) = wave_attenuation(conc,Lcell,nw,S_attn(i,:),omega,"MBK",floe_size);
S_attn_MBK(i+1,:) = wave_attenuation(conc,Lcell,nw,S_attn_MBK(i,:),omega,"MBK",floe_size);
end
Hs(i) = 4*sqrt(sum(S_attn(i,:).*dwavew));
Hs_MBK(i) = 4*sqrt(sum(S_attn_MBK(i,:).*dwavew));
end % i, prop_length
addpath functions
conFigure(30,1.5)
figure
yyaxis left
plot(dist,Hs)
hold on
plot(dist,Hs_MBK)
hold off
ylabel('$H_s$ [m]')
ylim([0,8])
yyaxis right
plot(dist,floe_size_vec./1000)
hold on
plot(dist,aice_vec)
ylabel('$r_a$ [km] \& SIC [-]')
%ylim([0,1000])
%xline(dist(scatter_loc),'--',{'$r_a = 100$'},'Interpreter','latex')
set(gca,'YScale','linear')
xlabel('Distance [km]')
legend({'$H_s$ (amp. drop)','$H_s$ (MBK)','SIC','Floe radius ($r_a$)'},'AutoUpdate','off','Location','northoutside','Orientation','horizontal')
exportgraphics(f,'amp_dropoff_MBK.pdf','ContentType','vector')
%%
T = (2*pi)./omega;
lambda = (gravity*(T.^2))/(2*pi); % Wave lengths
close all
conFigure(10,1.5)
f = figure;
yyaxis left
plot(dist,Hs)
ylabel('$H_s$ [m]')
hold on
yyaxis right
plot(dist,aice_vec)
plot(dist,floe_size_vec./1000)
ylabel('$r_a$ [km] \& SIC [-]')
for i = 2:9%length(scatter_loc)
%xline(dist(scatter_loc(i)),'--',{strcat('$\lambda$' ,sprintf('= %g',round(lambda(i),-1)))},'Interpreter','latex','HandleVisibility','off')
end
legend({'$H_s$','SIC','Floe radius ($r_a$)'},'AutoUpdate','off','Location','northoutside','Orientation','horizontal')
set(gca,'YScale','linear')
ylim([0,1])
%ylabel('Normalised values')
xlabel('Distance [km]')
exportgraphics(f,'amp_dropoff.pdf','ContentType','vector')
%addpath /Users/noahday/Documents/MATLAB/matlab2tikz/src/
%matlab2tikz('1d_amp_drop.tex', 'standalone', true);
%%
close all
% Create a 3x4 array of sample data in the range of 0-255.
data = repmat(dist',[1,nw-1]);
data(1:10,:) = 10;
data = zeros(length(dist),nw-1);
for j = 1:nw-1
for i = 1:length(dist)
if i >= scatter_loc(j+1)
% Consolidated ice
data(i,j) = 1;
end
end
end
X = repmat(lambda(2:end),[length(dist),1]);
Y = repmat(dist,[1,nw-1]);
conFigure(14,2)
f = figure;
pcolor(data')
%hold on
%plot(1:length(dist),floe_size_vec)
% Initialize a color map array of 256 colors.
yticks(1:5:nw-1)
yticklabels(round(lambda(2:5:end),2,"significant"))
ylabel('$\lambda$ [m]')
xticks(1:10:n_points)
xlabel('Distance from ice edge [km]')
xticklabels(round(dist(1:10:end),0))
colorMap = jet(2);
cbh = colorbar ; %Create Colorbar
cbh.Ticks = [0,1] ; %Create 8 ticks from zero to 1
cbh.TickLabels = {'Unconsolidated','Consolidated'} ; %Replace the labels of these 8 ticks with the numbers 1 to 8
%%
close all
figure
C = hadamard(20);
pcolor(data)
colormap(gray(3))
axis ij
axis square
%%
close all
floe_size = 10;
[S_test beta_N] = amplitude_dropoff(ones(1,31),omega,floe_size);
figure
scatter(omega,S_test)
xlabel('$\omega$')
ylim([-0.2,1.2])
ylabel('$S_{drop}(\omega)/S_{0}(\omega)$')
figure
scatter(omega,beta_N,'linewidth',3)
xlabel('$\omega$')
ylim([-0.1,1.1])
ylabel('$\beta_N$')
gravity = 9.80665;
T = (2*pi)./omega;
lambda = (gravity*(T.^2))/(2*pi); % Wave lengths
idx = 2*floe_size < (lambda/2);
pos = find(idx);
figure
scatter(lambda,S_test,'linewidth',3)
set(gca,'XScale','log')
xlabel('$\lambda$')
ylim([-0.1,1.1])
xlim([0,10^3])
xline(lambda(pos(end)),'--',{'$d=\lambda/2$'},'Interpreter','latex','LabelVerticalAlignment','bottom')
ylabel('$S_{drop}(\lambda)/S_{0}(\lambda)$')
title(sprintf('Transmission, $d$ = %g m',floe_size))
%% CICE propagation
% Read data in ----------------------------------------------------------------------------------------
addpath functions
filename_ww3 = '/Users/noahday/GitHub/cice-dirs/input/CICE_data/forcing/access-om2_1deg/CAWCR/MONTHLY/2017/ww3_om2_1deg_201707.nc';
filename = '/Volumes/NoahDay5TB/WIMonAlessandroRun/history/iceh.2017-07-01.nc';
sector = "SH";
grid = 'om2';
aicen_data = data_format_sector(filename,'aicen',sector);
aice_data = sum(aicen_data,3);
swh_data = data_format_cawcr(filename_ww3,'hs');
swh_data = swh_data(:,:,1);
fp_data = data_format_cawcr(filename_ww3,'fp');
fp_data = fp_data(:,:,1);
idx = fp_data < 0;
fp_data(idx) = NaN;
ppd_data = 1./fp_data;
mwd_data = data_format_cawcr(filename_ww3,'dir');
mwd_data = mwd_data(:,:,1);
hte_data = data_format_sector(filename,'HTE',sector);
hice_data = data_format_sector(filename,'hi',sector);
fsdrad_data = data_format_sector(filename,'fsdrad',sector);
[lat,lon] = grid_read(grid);
%lon_pos = 30;
clear Hs Hs_dropoff
Hs = zeros(size(lon));
Hs_dropoff = zeros(size(lon));
%lon_required = 90;
%cell_lon_idx = near1(lon(:,1),lon_required); % The cell with longitude closest to lon_required
% Parameters ----------------------------------------------------------------------------------------
tolice = 1.0e-2; % conc<tolice treated as zero ice
tolh = 1.0e-1; % h<tolh treated as zero ice
toli = 1.0e-16; % threshold for the propagation of waves
gravity = 9.80665;
puny = 1.0e-11;
lon_range = 1:360;
for lon_pos = lon_range
lat_range = 1:60;
swh_data_vec= swh_data(lon_pos,lat_range);
aice_data_vec= aice_data(lon_pos,lat_range);
hice_data_vec= hice_data(lon_pos,lat_range);
lat_vec = lat(lon_pos,lat_range);
cell_lon_idx = lon_pos;
aice_gt_puny = find(aice_data_vec>eps);
if isempty(aice_gt_puny)
wave_lat = 3;
else
wave_lat = aice_gt_puny(end)+1; % The last cell with aice > puny
end
length_transect = wave_lat - 1;
Hs_init = swh_data(cell_lon_idx,wave_lat);
Tp_init = ppd_data(cell_lon_idx,wave_lat);
dir_spread = 1; % = 1, we are reading in CAWCR data
% 1. Intialise wave spectrum at wave_lat
nw = 31;
clear S_attn S_attn_dropoff int_D
[S_init,omega,T] = SDF_Bretschneider(Hs_init,Tp_init,nw);
wavefreq = omega/(2*pi);
dwavefreq = wavefreq(1:end) - [0,wavefreq(1:end-1)];
mwd = mwd_data(cell_lon_idx, wave_lat)*(pi/180); % Mean wave direction, rad
thn = 31; % number of theta bins
n = 2.5; % Cosine exponent
if dir_spread == 1
[S_spread,D,theta_vec] = cosine_spreader(S_init,mwd,thn,n);
dtheta = theta_vec(1:end) - [0,theta_vec(1:end-1)];
S_attn(1,:) = S_spread;
S_attn_dropoff(1,:) = S_spread;
else
S_attn(1,:) = S_init;
end
% 2. Propagate the waves, sub_uncoupled
% increment_floe
%! !DESCRIPTION:
%!
%! Increase ice floe tracer by scaled timestep length.
L_data = hte_data(cell_lon_idx,wave_lat:-1:wave_lat-length_transect); % Length of cell, converting km to m
dwavew = dwavefreq.*(2*pi);
conc_vec = aice_data_vec(wave_lat-1:-1:1);
scatter_pos = find(conc_vec > 0.1);
if isempty(scatter_pos)
scatter_loc = 0;
else
scatter_loc = scatter_pos(1);
scatter_loc_vec(lon_pos) = scatter_loc;
end
prop_length = find(~isnan(aice_data_vec(wave_lat:-1:1)));
if isempty(prop_length)
prop_length = 1;
else
prop_length = prop_length(end);% Propagation length, cells
prop_length = wave_lat - 2;
end
flg_amp_drop = zeros(1,length(omega));
for i = 1:prop_length
conc = aice_data_vec(wave_lat-i);
hice = hice_data_vec(wave_lat-i);
floe_size = fsdrad_data(cell_lon_idx,wave_lat-i-1);% Radius, m
Lcell = L_data(wave_lat-i-1); % initialise propagation length
if conc < tolice
% As there is no ice, apply no attenuation
S_attn(i+1,:) = S_attn(i,:);
S_attn_dropoff(i+1,:) = S_attn_dropoff(i,:);
elseif conc > tolice % Attenuate
% MBK attenuation
S_attn(i+1,:) = wave_attenuation(conc,Lcell,nw,S_attn(i,:),omega,"MBK",floe_size);
% Amplitude drop check
for om_i = 1:length(omega)
if flg_amp_drop(om_i) == 0
T = (2*pi)./omega(om_i);
lambda = (gravity*(T.^2))/(2*pi); % Wave lengths
if conc > 0.1 && lambda <= 2*floe_size
% Unbroken ice, apply the amplitude drop-off
if flg_amp_drop(om_i) == 0
%disp('Scatter')
%disp(lambda)
%disp(floe_size)
%[S_attn(i,:) ] = amplitude_dropoff(S_attn(i,:),omega,floe_size);
S_attn_dropoff(i,om_i) = 0.5*S_attn_dropoff(i,om_i);
flg_amp_drop(om_i) = 1;
scatter_loc(om_i) = i;
end
end
else
% Broken ice, no drop-off
S_attn_dropoff(i,om_i) = S_attn_dropoff(i,om_i);
end
end
S_attn_dropoff(i+1,:) = wave_attenuation(conc,Lcell,nw,S_attn_dropoff(i,:),omega,"MBK",floe_size);
elseif isnan(conc)
S_attn(i+1,:) = NaN;
S_attn_dropoff(i+1,:) = NaN;
end
Hs(cell_lon_idx,wave_lat-i-1) = 4*sqrt(sum(S_attn(i,:).*dwavew));
Hs_dropoff(cell_lon_idx,wave_lat-i-1) = 4*sqrt(sum(S_attn_dropoff(i,:).*dwavew));
% Calculate the wave height for each wave type
%lambda = gravity./(2*pi*(wavefreq).^2); % Wavelength, m
%idx_wind = lambda < 50;
%idx_swell = lambda > 50 & lambda < 154; % 154 instead of 150 as one point is at 153
%idx_long = lambda > 154;
%Hs_wind(cell_lon_idx,wave_lat-i-1) = 4*sqrt(sum(S_attn_adj(i,idx_wind).*dwavew(idx_wind)));
%Hs_swell(cell_lon_idx,wave_lat-i-1) = 4*sqrt(sum(S_attn_adj(i,idx_swell).*dwavew(idx_swell)));
%Hs_long(cell_lon_idx,wave_lat-i-1) = 4*sqrt(sum(S_attn_adj(i,idx_long).*dwavew(idx_long)));
end % i, prop_length
end
land_mask = isnan(aice_data(cell_lon_idx,:));
Hs(cell_lon_idx,land_mask) = NaN;
Hs_dropoff(cell_lon_idx,land_mask) = NaN;
Hs(Hs==0) = NaN;
Hs_dropoff(Hs_dropoff==0) = NaN;
%%
close all
conFigure(11)
f = figure;
w = worldmap('world');
axesm eqaazim; %, eqaazim wetch eqdazim vperspec, eqdazim flips the x-axis, and y-axis to eqaazim. cassini
setm(w, 'Origin', [-90 0 0]);
setm(w, 'maplatlimit', [-90,-50]);
setm(w, 'maplonlimit', [-180,180]);
setm(w, 'meridianlabel', 'off')
setm(w, 'parallellabel', 'off')
setm(w, 'mlabellocation', 60);
setm(w, 'plabellocation', 10);
setm(w, 'mlabelparallel', -45);
setm(w, 'mlinelimit', [-75 -50]);
setm(w, 'plinelimit', [-75 -50]);
setm(w, 'grid', 'off');
setm(w, 'frame', 'off');
setm(w, 'labelrotation', 'on')
pcolorm(lat,lon,Hs)
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(w, land, 'FaceColor', [0.5 0.7 0.5])
a = colorbar;
a.Label.String = "$H_s$ [m]";
a.TickLabelInterpreter = 'latex';
a.Label.Interpreter = 'latex';
caxis([0,10])
cmap_cols = cmocean('balance','pivot',0,31);%-10^(-3));
%cmap_cols = cmap_cols.^2;
%cmap_temp = cmocean('balance',10,'pivot',0);
%cmap_cols(end,:) = [0.9,0.9,.9];
set(gca,'ColorScale','linear')
colormap(cmap_cols)
title(filename(end-12:end-3))
%colormap(cmocean('amp'))
exportgraphics(f,strcat('HsMBK',filename(end-12:end-3),'.pdf'),'ContentType','vector')
conFigure(11)
f = figure;
w = worldmap('world');
axesm eqaazim; %, eqaazim wetch eqdazim vperspec, eqdazim flips the x-axis, and y-axis to eqaazim. cassini
setm(w, 'Origin', [-90 0 0]);
setm(w, 'maplatlimit', [-90,-50]);
setm(w, 'maplonlimit', [-180,180]);
setm(w, 'meridianlabel', 'off')
setm(w, 'parallellabel', 'off')
setm(w, 'mlabellocation', 60);
setm(w, 'plabellocation', 10);
setm(w, 'mlabelparallel', -45);
setm(w, 'mlinelimit', [-75 -50]);
setm(w, 'plinelimit', [-75 -50]);
setm(w, 'grid', 'off');
setm(w, 'frame', 'off');
setm(w, 'labelrotation', 'on')
pcolorm(lat,lon,Hs_dropoff)
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(w, land, 'FaceColor', [0.5 0.7 0.5])
a = colorbar;
a.Label.String = "$H_s$ [m]";
a.TickLabelInterpreter = 'latex';
a.Label.Interpreter = 'latex';
caxis([0,10])
cmap_cols = cmocean('balance','pivot',0,31);%-10^(-3));
%cmap_cols = cmap_cols.^2;
%cmap_temp = cmocean('balance',10,'pivot',0);
%cmap_cols(end,:) = [0.9,0.9,.9];
set(gca,'ColorScale','linear')
colormap(cmap_cols)
title(filename(end-12:end-3))
%colormap(cmocean('amp'))
exportgraphics(f,strcat('HsDropoff',filename(end-12:end-3),'.png'),'ContentType','image','Resolution',1080)
conFigure(11)
f = figure;
w = worldmap('world');
axesm eqaazim; %, eqaazim wetch eqdazim vperspec, eqdazim flips the x-axis, and y-axis to eqaazim. cassini
setm(w, 'Origin', [-90 0 0]);
setm(w, 'maplatlimit', [-90,-50]);
setm(w, 'maplonlimit', [-180,180]);
setm(w, 'meridianlabel', 'off')
setm(w, 'parallellabel', 'off')
setm(w, 'mlabellocation', 60);
setm(w, 'plabellocation', 10);
setm(w, 'mlabelparallel', -45);
setm(w, 'mlinelimit', [-75 -50]);
setm(w, 'plinelimit', [-75 -50]);
setm(w, 'grid', 'off');
setm(w, 'frame', 'off');
setm(w, 'labelrotation', 'on')
pcolorm(lat,lon,Hs_dropoff-Hs)
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(w, land, 'FaceColor', [0.5 0.7 0.5])
a = colorbar;
a.Label.String = "$H_s$ [m]";
a.TickLabelInterpreter = 'latex';
a.Label.Interpreter = 'latex';
caxis([-2,2])
cmap_cols = cmocean('balance','pivot',0,31);%-10^(-3));
%cmap_cols = cmap_cols.^2;
%cmap_temp = cmocean('balance',10,'pivot',0);
%cmap_cols(end,:) = [0.9,0.9,.9];
set(gca,'ColorScale','linear')
colormap(cmap_cols)
title(filename(end-12:end-3))
%colormap(cmocean('amp'))
exportgraphics(f,strcat('HsDropoff-MBK',filename(end-12:end-3),'.png'),'ContentType','image','Resolution',1080)
%fsdrad_data
idx = aice_data < 0.01;
fsdrad_data(idx) = NaN;
conFigure(11)
f = figure;
w = worldmap('world');
axesm eqaazim; %, eqaazim wetch eqdazim vperspec, eqdazim flips the x-axis, and y-axis to eqaazim. cassini
setm(w, 'Origin', [-90 0 0]);
setm(w, 'maplatlimit', [-90,-50]);
setm(w, 'maplonlimit', [-180,180]);
setm(w, 'meridianlabel', 'off')
setm(w, 'parallellabel', 'off')
setm(w, 'mlabellocation', 60);
setm(w, 'plabellocation', 10);
setm(w, 'mlabelparallel', -45);
setm(w, 'mlinelimit', [-75 -50]);
setm(w, 'plinelimit', [-75 -50]);
setm(w, 'grid', 'off');
setm(w, 'frame', 'off');
setm(w, 'labelrotation', 'on')
pcolorm(lat,lon,fsdrad_data)
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(w, land, 'FaceColor', [0.5 0.7 0.5])
a = colorbar;
a.Label.String = "Representative floe radius $r_a$ [m]";
a.TickLabelInterpreter = 'latex';
a.Label.Interpreter = 'latex';
caxis([1,1000])
cmap_cols = cmocean('haline',31);%-10^(-3));
%cmap_cols = cmap_cols.^2;
%cmap_temp = cmocean('balance',10,'pivot',0);
%cmap_cols(end,:) = [0.9,0.9,.9];
set(gca,'ColorScale','log')
colormap(cmap_cols)
title(filename(end-12:end-3))
%colormap(cmocean('amp'))
exportgraphics(f,strcat('FSDrad',filename(end-12:end-3),'.png'),'ContentType','image','Resolution',1080)
%%
%% Functions
function [S_out,beta_N] = amplitude_dropoff(S_in,omega,floe_size)
% Setup
gravity = 9.80665;
T = (2*pi)./omega;
lambda = (gravity*(T.^2))/(2*pi); % Wave lengths, dispersion relation, m
% Scattering calculation
% Parameters
max_energy_loss = 1.0;
min_energy_loss = 0;
d_gt_lambda = 5;
unity = 1;
amplitude = (max_energy_loss-min_energy_loss)/2;
d_lambda = 2*floe_size./lambda;
idx = 2*floe_size < (lambda/2); % Converting from radius to diameter
beta_N = zeros(1,length(omega));
beta_N(idx) = 1;
beta_N(~idx) = 0.5;
S_out = S_in.*beta_N;
end
function [S,omega,T] = SDF_Bretschneider(Hs,Tm,nw)
fmin = 1/1000;%1/50;%1/16; % freq min
fmax = 1;%1/2;%1/6; % freq max
om1=2*pi*fmin; % ang freqs, rad/s
om2=2*pi*fmax;
om_0 = (om2 - om1)/(nw-1); % steps
gravit = 9.81;
% Calculate wave numbers and wavelengths
for lp_i=1:nw
omega(lp_i) = om1 + (lp_i-1)*om_0; % Frequency, rad/s
T(lp_i) = 2*pi/omega(lp_i); % Period, s
lam_wtr_in(lp_i) = gravit*(T(lp_i)^2)/2/pi; % Wave number
k_wtr_in(lp_i) = 2*pi/lam_wtr_in(lp_i); % Wave length
end
tmin = 1/fmax;
tmax = 1/fmin;
t1 = tmin;
t2 = tmax;
t_0 = (t2-t1)/(nw-1);
%clear omega
% Define steps in terms of period not frequency
%for lp_i=1:nw
% T(lp_i) = t1 + (lp_i-1)*t_0;
% omega(lp_i) = 2*pi/T(lp_i);
%end
% omega(lp_i) = om1 + (lp_i-1)*om_0; % Frequency, rad/s
% T(lp_i) = 2*pi/omega(lp_i); % Period, s
% lam_wtr_in(lp_i) = gravit*(T(lp_i)^2)/2/pi; % Wave number
% k_wtr_in(lp_i) = 2*pi/lam_wtr_in(lp_i); % Wave length
%end
for lp_i = 1:nw
om_m = 2*pi/Tm; % Peak angular frequency, rad/s
tau(lp_i) = 2*pi/omega(lp_i); % s
end
moment_no = 0;
f1 = (5/16)*(Hs.^2)*(om_m.^4); % m^2/s^4
f2 = omega.^(moment_no-5); % rad/s^-5
f3 = exp(-1.25*((tau/Tm).^4)); % dimensionless (as exponentials have no dimension)
S = f1.*f2.*f3; % rad x m^2 s/rad
end
function [S,T] = SDF_BretschneiderT(Hs,Tm,nw)
fmin = 1/400;%1/50;%1/16; % freq min
fmax = 1;%1/2;%1/6; % freq max
Tmin = 1/fmax; % s
Tmax = 1/fmin; % s
T1=Tmin; % ang freqs, rad/s
T2=Tmax;
T_0 = (T2 - T1)/(nw-1); % steps
gravit = 9.81;
% Calculate wave numbers and wavelengths
for lp_i=1:nw
T(lp_i) = T1 + (lp_i-1)*T_0; % Period, s
%lam_wtr_in(lp_i) = gravit*(T(lp_i)^2)/2/pi; % Wave length
%k_wtr_in(lp_i) = 2*pi/lam_wtr_in(lp_i); % Wave number
end
% tmin = 1/fmax;
% tmax = 1/fmin;
% t1 = tmin;
% t2 = tmax;
% t_0 = (t2-t1)/(nw-1);
% for lp_i = 1:nw
% om_m = 2*pi/Tm; % Peak angular frequency, rad/s
% tau(lp_i) = 2*pi/omega(lp_i); % s
% end
moment_no = 0;
f1 = (5/16)*(Hs.^2)*(Tm.^(-4)); % m^2/s^4
f2 = T.^(5); % rad/s^-5
f3 = exp(-1.25*((T./Tm).^4)); % dimensionless (as exponentials have no dimension)
S = f1.*f2.*f3; % rad x m^2 s/rad
end
function attn_spec = fn_Attn_MBK(local_wave_spec)
% Attenuate according to Meylan et al. (2014)
dum_om = local_wave_spec;
beta0 = 5.376168295200780e-005;
beta1 = 2.947870279251530e-005;
fn_Attn_MBK1 = beta0*(dum_om.^2) + beta1*(dum_om.^4);
attn_fac = 1;
attn_spec = attn_fac*fn_Attn_MBK1;
end
function [int_E_f_theta,D,theta_vec] = cosine_spreader(S_init,theta_m,thn,n)
% Spread the wave spectrum through angular space
% theta
% theta_m is the mean wave direction [rad], South = 0
% and integrate over -pi/2 to pi/2
% theta0 is the MWD
% D is the energy in directional spectrum
% theta_vec is the corresponding angles for D
% n is the index
theta_vec = linspace(theta_m-pi,theta_m+pi,thn);
low_bnd = theta_m - pi < theta_vec;
upp_bnd = theta_vec < theta_m + pi;
bnd = low_bnd.*upp_bnd;
D = zeros(1,thn);
D = cos((theta_vec-theta_m)/2).^(2*n);
D(~bnd) = 0; % Limiting the widths of the cosine in [theta_m - pi/2, theta0 + pi/2]
dtheta = theta_vec(1:end) - [0,theta_vec(1:end-1)];
C = 1/sum(D.*dtheta); % Normalising constant
D = C*D; % Normalising the directional spectrum
%D = (2/pi).*(cos(theta_vec-theta0)).^n;
%
% Integration step
%upper = pi/2;
%lower = 3*pi/2;
%low_bnd = lower < theta_vec;
%upp_bnd = theta_vec < upper;
%%bnd = low_bnd | upp_bnd;
%D(~bnd) = 0;
%dtheta = theta_vec(1:end) - [0,theta_vec(1:end-1)];
%int_D = sum(D.*dtheta);
% Integration step
% low_bnd = theta0 - pi/2 < theta_vec;
% upp_bnd = theta_vec < theta0 + pi/2;
% bnd = low_bnd.*upp_bnd;
% D(~bnd) = 0;
% dtheta = theta_vec(1:end) - [0,theta_vec(1:end-1)];
% int_D = sum(D.*dtheta);
% D = D./int_D;
% Integrate over the Southern wedge
lower = -pi/2;
upper = pi/2;
low_bnd = lower < theta_vec;
upp_bnd = theta_vec < upper;
bnd = low_bnd & upp_bnd;
lower = 3*pi/2;
upper = pi/2;
low_bnd = lower < theta_vec;
upp_bnd = theta_vec < upper;
bnd2 = low_bnd | upp_bnd;
bnd = bnd | bnd2;
E_f_theta = S_init'*D;
int_E_f_theta = sum(S_init'*(dtheta(bnd).*D(bnd)),2)';
end
function [data_out] = data_format_cawcr(filedir,variable)
% OM2 grid
lon = ncread(filedir,'LON');
lat = ncread(filedir,'LAT');
row = 281;
dim = 3;
data1 = ncread(filedir, variable);
latitude = [-90,90];
longitude = [-180,180];
data1 = rearrange_matrix(data1,row,dim);
% fixing data
[m, ~] = size(lon);
lon = [lon; lon(end,:) + 360/m];
lat = [lat; lat(end,:)];
data_out = [data1; data1(end,:,:)];
end
function [S_out] = wave_attenuation(conc,L,nw,S_in,omega,option,floe_size)
% conc is aice
% L is the length of the cell [m]
% nw is the number of points in frequency space
% S_in is the incoming wave spectra
% option : integer
% Do MBK exponential attenuation
if option == "MBK"
for lp_i=1:nw
alpha(lp_i) = conc*fn_Attn_MBK(omega(lp_i))/0.7; % 0.7 comes from the concentration measures in the observations of MBK
S_out(lp_i) = S_in(lp_i)*exp(-alpha(lp_i)*L);
end
else
% Adjusted alpha
gravity = 9.80665;
T = (2*pi)./omega;
lambda = (gravity*(T.^2))/(2*pi); % Wave lengths
% Parameters
max_alpha = 2.0;
min_alpha = 0.5;
unity = 1;
d_gt_lambda = 2;
d_lambda = 2*floe_size./lambda; % Diameter/wavelength
vert_translation = (max_alpha+min_alpha)/2;
horz_translation = (d_gt_lambda+unity)/2;
amplitude = (max_alpha-min_alpha)/2;
for lp_i=1:nw
alpha_M(lp_i) = conc*fn_Attn_MBK(omega(lp_i))/0.7; % 0.7 comes from the concentration measures in the observations of MBK
alpha_N(lp_i) = amplitude*tanh(-(d_lambda(lp_i)-horz_translation)) + vert_translation;
alpha(lp_i) = alpha_N(lp_i)*alpha_M(lp_i);
S_out(lp_i) = S_in(lp_i)*exp(-alpha(lp_i)*L);
end
end
end