-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial_eofs_and_elnino.m
172 lines (136 loc) · 2.98 KB
/
tutorial_eofs_and_elnino.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
close all
load pacific_sst.mat
%whos
datestr(t([1,end]));
mean(diff(t));
[Lon,Lat] = meshgrid(lon,lat);
% El nino southern oscilation index
idx = enso(sst,t,Lat,Lon);
anomaly(t,idx)
%% Plot power density spectrum
load train
t = (0:length(y)-1)/Fs;
plot(t,y)
box off
xlabel 'time (s)'
plotpsd(y,Fs)
xlabel 'frequency (Hz)'
plotpsd(idx,12)
plotpsd(single(idx),12,'logx','lambda')
xlabel('Periodicity (years)')
%%
% Calculate the mean SST
sst_mean = mean(sst,3);
imagescn(lon,lat,sst_mean)
cb = colorbar;
% Calculate trend (deg/yr)
sst_trend = 365.25*trend(sst,t,3);
imagescn(lon,lat,10*sst_trend)
cb = colorbar;
ylabel(cb,'temperature trend {\circ}C per decade')
cmocean('balance','pivot')
%% Eofs identify the modes of variability of a system
imagescn(lon,lat,eof(sst,1))
colorbar;
cmocean('balance','pivot')
title 'eof first mode'
%% Mark a location of interest
hold on
plot(lon(12),lat(10),'ks')
hold off
%%
% Get time series at that location of interest
sst1 = squeeze(sst(10,12,:));
plot(t,sst1)
datetick
% Deaseason the data
sst1_ds = deseason(sst1,t);
hold on
plot(t,sst1_ds)
hold off
%%
sst_ds = deseason(sst,t);
imagescn(lon,lat,eof(sst_ds,1))
colorbar
cmocean('balance','pivot')
%%
sst_ds_dt = detrend3(sst_ds);
sst_anom_var = var(sst_ds_dt,[],3); % alont the third dimension
imagescn(lon,lat,sst_anom_var)
caxis([0,1])
%% What are the modes of variability in this deseasoned detrended data
% Calculate eofs
[eof_maps,pc,expv] = eof(sst_ds_dt,6);
% PC is the principal component time series
clf
subplot(3,2,1)
imagescn(lon,lat,eof_maps(:,:,1))
axis off
cmocean('balance','pivot')
axis image
subplot(3,2,2)
plot(t,pc(1,:))
axis tight
box off
datetick
subplot(3,2,3)
imagescn(lon,lat,eof_maps(:,:,2))
axis off
cmocean('balance','pivot')
axis image
subplot(3,2,4)
plot(t,pc(2,:))
axis tight
box off
datetick
subplot(3,2,5)
imagescn(lon,lat,eof_maps(:,:,3))
axis off
cmocean('balance','pivot')
axis image
subplot(3,2,6)
plot(t,pc(3,:))
axis tight
box off
datetick
sgtitle 'The first three principal components'
%%
expv
%%
clf
subplot(1,2,1)
h1 = imagescn(lon,lat,sst_ds_dt(:,:,1));
title 'observed sst anomaly'
cmocean bal
caxis([-1,1]*2.5)
subplot(1,2,2)
h1 = imagescn(lon,lat,eof_maps(:,:,1).*pc(1,1));
title 'reconstructed sst anomaly'
cmocean bal
caxis([-1,1]*2.5)
sgtitle(datestr(t(1)))
%%
h2.CData = eof_maps(:,:,1)*pc(1,1) + ...
eof_maps(:,:,2)*pc(2,1) + ...
eof_maps(:,:,3)*pc(3,1) + ...
eof_maps(:,:,4)*pc(4,1) + ...
eof_maps(:,:,5)*pc(5,1) + ...
eof_maps(:,:,6)*pc(6,1);
% Reconstruct sst anomalies from first 5 modes
sst_ds_dt_r = reof(eof_maps,pc,1:5);
for k = 1:120
h1.CData = sst_ds_dt(:,:,k);
h2.CData = sst_ds_dt_r(:,:,k);
subplot(1,2,1)
h1 = imagescn(lon,lat,h1.CData );
title 'observed sst anomaly'
cmocean bal
caxis([-1,1]*2.5)
subplot(1,2,2)
h1 = imagescn(lon,lat,h2.CData);
title 'reconstructed sst anomaly'
cmocean bal
caxis([-1,1]*2.5)
pause(0.1)
sgtitle(datestr(t(k)))
end