Skip to content

Commit 75d18ab

Browse files
committed
Use profiler from skchange
1 parent 563ff77 commit 75d18ab

5 files changed

+7
-7
lines changed

interactive/explore_circular_binseg.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
import plotly.express as px
2-
from streamchange.utils import Profiler
32

43
from skchange.anomaly_detectors.circular_binseg import (
54
CircularBinarySegmentation,
65
make_anomaly_intervals,
76
)
87
from skchange.datasets.generate import generate_teeth_data
8+
from skchange.utils.benchmarking.profiler import Profiler
99

1010
df = generate_teeth_data(n_segments=3, mean=10, segment_length=20, p=1, random_state=7)
1111
detector = CircularBinarySegmentation(

interactive/explore_moscore.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,13 @@
11
import numpy as np
22
import plotly.express as px
33
from numba import njit
4-
from streamchange.utils import Profiler
54

65
from skchange.change_detectors.moscore import Moscore, where
76
from skchange.datasets.generate import add_linspace_outliers, generate_teeth_data
87
from skchange.scores.mean_score import init_mean_score, mean_score
8+
from skchange.utils.benchmarking.profiler import Profiler
99

10-
# Compare skchange output to streamchange
10+
# Simple univariate example
1111
df = generate_teeth_data(n_segments=2, mean=10, segment_length=100, p=1, random_state=2)
1212
detector = Moscore()
1313
changepoints = detector.fit_predict(df)

interactive/explore_moscore_anomaly.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11
import numpy as np
22
import plotly.express as px
3-
from streamchange.utils import Profiler
43

54
from skchange.anomaly_detectors.moscore_anomaly import MoscoreAnomaly
65
from skchange.datasets.generate import generate_anomalous_data
76
from skchange.scores.mean_score import init_mean_score, mean_anomaly_score
7+
from skchange.utils.benchmarking.profiler import Profiler
88

99
n = 500
1010
df = generate_anomalous_data(

interactive/explore_pelt.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
import numpy as np
2-
from streamchange.utils import Profiler
32

43
from skchange.change_detectors.pelt import Pelt
54
from skchange.costs.mean_cost import init_mean_cost, mean_cost
65
from skchange.datasets.generate import generate_teeth_data
6+
from skchange.utils.benchmarking.profiler import Profiler
77

8-
# Compare skchange output to streamchange
8+
# Simple univariate example
99
df = generate_teeth_data(n_segments=2, mean=10, segment_length=100, p=1, random_state=2)
1010
detector = Pelt(min_segment_length=1)
1111
detector.fit_predict(df)

interactive/explore_seeded_binseg.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
import plotly.express as px
2-
from streamchange.utils import Profiler
32

43
from skchange.change_detectors.seeded_binseg import SeededBinarySegmentation
54
from skchange.datasets.generate import generate_teeth_data
5+
from skchange.utils.benchmarking.profiler import Profiler
66

77
df = generate_teeth_data(n_segments=2, mean=10, segment_length=20, p=1, random_state=7)
88
detector = SeededBinarySegmentation(score="mean", growth_factor=2)

0 commit comments

Comments
 (0)