forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
swin.yml
161 lines (161 loc) · 6.19 KB
/
swin.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Models:
- Name: upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
In Collection: UPerNet
Metadata:
backbone: Swin-T
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 47.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.02
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.41
mIoU(ms+flip): 45.79
Config: configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth
- Name: upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
In Collection: UPerNet
Metadata:
backbone: Swin-S
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 67.93
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.17
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.72
mIoU(ms+flip): 49.24
Config: configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth
- Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
In Collection: UPerNet
Metadata:
backbone: Swin-B
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 79.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.61
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.99
mIoU(ms+flip): 49.57
Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth
- Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K
In Collection: UPerNet
Metadata:
backbone: Swin-B
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.31
mIoU(ms+flip): 51.9
Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth
- Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K
In Collection: UPerNet
Metadata:
backbone: Swin-B
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 82.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 8.52
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.35
mIoU(ms+flip): 49.65
Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth
- Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K
In Collection: UPerNet
Metadata:
backbone: Swin-B
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.76
mIoU(ms+flip): 52.4
Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth
- Name: upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: Swin-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 121.51
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 10.98
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 51.17
mIoU(ms+flip): 52.99
Config: configs/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k_20220318_015320-48d180dd.pth
- Name: upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: Swin-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 132.1
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 12.42
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.25
mIoU(ms+flip): 54.12
Config: configs/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth