-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDigits Recongiation.py
134 lines (54 loc) · 1.29 KB
/
Digits Recongiation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python
# coding: utf-8
# In[4]:
import numpy as np
import pandas as pd
from sklearn.datasets import load_digits
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
digits = load_digits()
# In[3]:
plt.gray()
for i in range(3):
plt.matshow(digits.images[i])
# In[7]:
digits.target
# In[8]:
dir(digits)
# In[9]:
digits.target_names
# In[10]:
df = pd.DataFrame(digits.data,digits.target)
df
# In[14]:
df['target'] = digits.target
df.head(20)
# # Training and Testing model
# In[59]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df.drop('target',axis='columns'), df.target, test_size=0.5)
# In[60]:
from sklearn.svm import SVC
rbf_model= SVC(kernel='rbf')
# In[61]:
len(X_train)
# In[53]:
len(X_test)
# # Fitting the model
# In[62]:
rbf_model.fit(X_train, y_train)
# In[63]:
rbf_model.score(X_test,y_test)
# In[64]:
print('Accuracy =',rbf_model.score(X_test,y_test))
# # Using linear kernel
# In[65]:
linear_model= SVC(kernel='linear')
linear_model.fit(X_train,y_train)
# In[67]:
linear_model.score(X_test,y_test)
# In[68]:
print('Accuracy =',linear_model.score(X_test,y_test))
# In[72]:
from sklearn.externals import joblib
# In[ ]: