-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE.py
195 lines (157 loc) · 5.77 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
from scipy.stats import multivariate_normal
def generate_data(mean, cov, size):
"""
Generate random data from a multivariate normal distribution.
Parameters:
mean (array): Mean of the distribution.
cov (array): Covariance matrix.
size (int): Number of data points to generate.
Returns:
array: Generated data points.
"""
return multivariate_normal.rvs(mean, cov, size)
def mean_center(data):
"""
Perform mean centering on the data.
Parameters:
data (array): Original data.
Returns:
tuple: Mean-centered data and the mean.
"""
mean = np.mean(data, axis=0)
centered_data = data - mean
return centered_data, mean
def plot_original_data(data, reconstructed_data):
"""
Plot the original data and reconstructed data.
Parameters:
data (array): Original data.
reconstructed_data (array): Reconstructed data.
"""
plt.figure(figsize=(8, 6))
# Plot original data
plt.scatter(data[:, 0], data[:, 1], label="Original Data", s=50, marker='o')
# Plot reconstructed data
plt.scatter(reconstructed_data[:, 0], reconstructed_data[:, 1], label="Reconstructed Data", s=50, marker='x', color='red')
for i in range(len(data)):
plt.plot([data[i, 0], reconstructed_data[i, 0]], [data[i, 1], reconstructed_data[i, 1]], 'g--')
plt.xlabel("X")
plt.ylabel("Y")
plt.title("VAE Reconstruction")
plt.legend()
plt.grid(True)
plt.axhline(y=0, color='k', linestyle='--', linewidth=0.5)
plt.axvline(x=0, color='k', linestyle='--', linewidth=0.5)
plt.gca().set_aspect('equal') # Equal aspect ratio
plt.show()
# Define the VAE model
class VAE(nn.Module):
def __init__(self, input_dim, latent_dim, hidden_dim=32):
super(VAE, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.LeakyReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.LeakyReLU(),
)
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
self.fc_var = nn.Linear(hidden_dim, latent_dim)
self.decoder = nn.Sequential(
nn.Linear(latent_dim, hidden_dim),
nn.LeakyReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.LeakyReLU(),
nn.Linear(hidden_dim, input_dim),
)
def reparameterize(self, mu, log_var):
"""
Reparameterization trick for sampling from the latent distribution.
Parameters:
mu (tensor): Mean of the latent distribution.
log_var (tensor): Log variance of the latent distribution.
Returns:
tensor: Sampled latent vector.
"""
std = torch.exp(0.5 * log_var) # Standard deviation
eps = torch.randn_like(std) # Random noise with same size as std
return mu + eps * std
def forward(self, x):
encoded = self.encoder(x)
mu = self.fc_mu(encoded)
log_var = self.fc_var(encoded)
z = self.reparameterize(mu, log_var)
decoded = self.decoder(z)
return decoded, mu, log_var
def train_VAE(model, data_loader, num_epochs=100, learning_rate=0.001):
"""Trains the VAE model.
Args:
model: The VAE model.
data_loader: The data loader.
num_epochs: Number of training epochs.
learning_rate: Learning rate for the optimizer.
Returns:
A list of training losses.
"""
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
train_losses = []
def loss_function(recon_x, x, mu, log_var):
"""VAE loss function."""
recon_loss = nn.functional.mse_loss(recon_x, x, reduction='sum')
kl_div = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return recon_loss + kl_div
for epoch in range(num_epochs):
epoch_loss = 0.0
for batch_data in data_loader:
inputs = batch_data[0]
optimizer.zero_grad()
reconstruction, mu, log_var = model(inputs)
loss = loss_function(reconstruction, inputs, mu, log_var)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
train_losses.append(epoch_loss / len(data_loader))
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss / len(data_loader):.4f}")
return train_losses
# Main program
if __name__ == "__main__":
# Configuration
CLASS_SIZE = 50
MEAN1 = np.array([1, 2])
COV1 = np.array([[5, -1], [-1, 1]])
batch_size = 32
num_epochs = 1000
latent_dim = 1
hidden_dim = 32
# Step 1: Generate data
data = generate_data(MEAN1, COV1, CLASS_SIZE)
# Step 2: Mean centering
centered_data, mean = mean_center(data)
# Convert data to PyTorch tensors
centered_data_tensor = torch.tensor(centered_data, dtype=torch.float32)
# Create a DataLoader for batching and shuffling
dataset = TensorDataset(centered_data_tensor)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Define model parameters
input_dim = centered_data.shape[1]
# Create the VAE model
model = VAE(input_dim, latent_dim, hidden_dim)
# Train the VAE
train_losses = train_VAE(model, data_loader, num_epochs=num_epochs)
# Get reconstructed data
with torch.no_grad():
reconstructed_data, _, _ = model(centered_data_tensor)
reconstructed_data = reconstructed_data.numpy()
reconstructed_data += mean
# Step 6: Visualization
plot_original_data(data, reconstructed_data)
plt.plot(train_losses)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.show()