-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rec.py
268 lines (220 loc) · 8.96 KB
/
train_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
from easydict import EasyDict as edict
import matplotlib.pyplot as plt
import yaml
import os
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import lib.utils.utils as utils
from lib.dataset import get_dataset
from lib.core import function
from lib.utils.utils import model_info
from lib.models.plateNet import myNet_ocr
from alphabets import plateName, plate_chr
# from LPRNet import build_lprnet
from tensorboardX import SummaryWriter
def parse_arg():
parser = argparse.ArgumentParser(description="train crnn")
parser.add_argument('--cfg', help='experiment configuration filename', required=True, type=str)
parser.add_argument('--img_h', type=int, default=48, help='height')
parser.add_argument('--img_w', type=int, default=168, help='width')
args = parser.parse_args()
with open(args.cfg, 'r') as f:
# config = yaml.load(f, Loader=yaml.FullLoader)
config = yaml.load(f)
config = edict(config)
config.DATASET.ALPHABETS = plateName
config.MODEL.NUM_CLASSES = len(config.DATASET.ALPHABETS)
config.HEIGHT = args.img_h
config.WIDTH = args.img_w
return config
def main():
# load config
config = parse_arg()
# create output folder
output_dict = utils.create_log_folder(config, phase='train')
# cudnn
cudnn.benchmark = config.CUDNN.BENCHMARK
cudnn.deterministic = config.CUDNN.DETERMINISTIC
cudnn.enabled = config.CUDNN.ENABLED
# writer dict
writer_dict = {
'writer': SummaryWriter(log_dir=output_dict['tb_dir']),
'train_global_steps': 0,
'valid_global_steps': 0,
}
# construct face related neural networks
# cfg =[8,8,16,16,'M',32,32,'M',48,48,'M',64,128] #small model
cfg = [16, 16, 32, 32, 'M', 64, 64, 'M', 96, 96, 'M', 128, 256] # medium model
# cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256] #big model
# model = crnn.get_crnn(config,cfg=cfg)
model = myNet_ocr(num_classes=len(plate_chr), cfg=cfg)
# model = build_lprnet(num_classes=len(plate_chr))
# get device
if torch.cuda.is_available():
device = torch.device("cuda:{}".format(config.GPUID))
else:
device = torch.device("cpu:0")
model = model.to(device)
# define loss function
criterion = torch.nn.CTCLoss()
last_epoch = config.TRAIN.BEGIN_EPOCH
optimizer = utils.get_optimizer(config, model)
if isinstance(config.TRAIN.LR_STEP, list):
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, config.TRAIN.LR_STEP,
config.TRAIN.LR_FACTOR, last_epoch - 1
)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, config.TRAIN.LR_STEP,
config.TRAIN.LR_FACTOR, last_epoch - 1
)
if config.TRAIN.FINETUNE.IS_FINETUNE:
model_state_file = config.TRAIN.FINETUNE.FINETUNE_CHECKPOINIT
if model_state_file == '':
print(" => no checkpoint found")
checkpoint = torch.load(model_state_file, map_location='cpu')
if 'state_dict' in checkpoint.keys():
checkpoint = checkpoint['state_dict']
# from collections import OrderedDict
# model_dict = OrderedDict()
# for k, v in checkpoint.items():
# if 'cnn' in k:
# model_dict[k[4:]] = v
# model.cnn.load_state_dict(model_dict)
model.load_state_dict(checkpoint)
# if config.TRAIN.FINETUNE.FREEZE:
# for p in model.cnn.parameters():
# p.requires_grad = False
elif config.TRAIN.RESUME.IS_RESUME:
model_state_file = config.TRAIN.RESUME.FILE
if model_state_file == '':
print(" => no checkpoint found")
checkpoint = torch.load(model_state_file, map_location='cpu')
if 'state_dict' in checkpoint.keys():
model.load_state_dict(checkpoint['state_dict'])
last_epoch = checkpoint['epoch']
# optimizer.load_state_dict(checkpoint['optimizer'])
# lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
else:
model.load_state_dict(checkpoint)
model_info(model)
train_dataset = get_dataset(config)(config, input_w=config.WIDTH, input_h=config.HEIGHT, is_train=True)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=config.TRAIN.BATCH_SIZE_PER_GPU,
shuffle=config.TRAIN.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
val_dataset = get_dataset(config)(config, input_w=config.WIDTH, input_h=config.HEIGHT, is_train=False)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=config.TEST.BATCH_SIZE_PER_GPU,
shuffle=config.TEST.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
best_acc = 0.5
converter = utils.strLabelConverter(config.DATASET.ALPHABETS)
# 为新数据创建列表
train_losses = []
val_losses = []
accuracies = []
learning_rates = []
for epoch in range(last_epoch, config.TRAIN.END_EPOCH):
# function.train(config, train_loader, train_dataset, converter, model,
# criterion, optimizer, device, epoch, writer_dict, output_dict)
# lr_scheduler.step()
#
# acc = function.validate(config, val_loader, val_dataset, converter,
# model, criterion, device, epoch, writer_dict, output_dict)
train_info = function.train(config, train_loader, train_dataset, converter, model,
criterion, optimizer, device, epoch, writer_dict, output_dict)
val_info = function.validate(config, val_loader, val_dataset, converter,
model, criterion, device, epoch, writer_dict, output_dict)
# 单独获取accuracy和val_loss
acc = val_info['accuracy'] # 获取准确率
val_losses.append(val_info['val_loss'])
accuracies.append(acc)
is_best = acc > best_acc
best_acc = max(acc, best_acc)
print("is best:", is_best)
print("best acc is:", best_acc)
# 收集数据
train_losses.append(train_info['loss'])
print(f"Epoch {epoch}: Added Training Loss: {train_info['loss']}")
learning_rates.append(train_info['lr'])
print(f"Epoch {epoch}: Added Learning Rate: {train_info['lr']}")
# val_losses.append(val_info['val_loss'])
print(f"Epoch {epoch}: Added Validation Loss: {val_info['val_loss']}")
# accuracies.append(val_info['accuracy'])
print(f"Epoch {epoch}: Added Accuracy: {val_info['accuracy']}")
lr_scheduler.step()
# save checkpoint
torch.save(
{
"cfg": cfg,
"state_dict": model.state_dict(),
"epoch": epoch + 1,
# "optimizer": optimizer.state_dict(),
# "lr_scheduler": lr_scheduler.state_dict(),
"best_acc": best_acc,
}, os.path.join(output_dict['chs_dir'], "checkpoint_{}_acc_{:.4f}.pth".format(epoch, acc))
)
# print("Number of epochs:", config.TRAIN.END_EPOCH - last_epoch)
# print("Length of train_losses:", len(train_losses))
# print("Contents of train_losses:", train_losses)
#
# print("Length of val_losses:", len(val_losses))
# print("Contents of val_losses:", val_losses)
#
# print("Length of accuracies:", len(accuracies))
# print("Contents of accuracies:", accuracies)
# 绘制图表
# 绘制并保存损失和学习率图表
# 假设已经有了以下数据列表
epochs = range(1, len(train_losses) + 1)
# 创建一个新的大图和子图
plt.figure(figsize=(12, 10))
# 第一个子图:训练损失
plt.subplot(2, 2, 1) # (行数, 列数, 索引)
plt.plot(epochs, train_losses, label='Training Loss', color='blue')
plt.title('Training Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
# 第二个子图:验证损失
plt.subplot(2, 2, 2)
plt.plot(epochs, val_losses, label='Validation Loss', color='red')
plt.title('Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
# 第三个子图:学习率
plt.subplot(2, 2, 3)
plt.plot(epochs, learning_rates, label='Learning Rate', color='green')
plt.title('Learning Rate')
plt.xlabel('Epochs')
plt.ylabel('Rate')
plt.legend()
# 第四个子图:准确率
plt.subplot(2, 2, 4)
plt.plot(epochs, accuracies, label='Accuracy', color='purple')
plt.title('Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
# 调整子图间的间距
plt.tight_layout()
# 保存图像
plt.savefig(os.path.join(results_dir, 'training_summary.png'))
plt.close() # 关闭图形
writer_dict['writer'].close()
if __name__ == '__main__':
results_dir = 'rec_train_results'
if not os.path.exists(results_dir):
os.makedirs(results_dir)
main()