Skip to content

Code for "Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning"

License

Notifications You must be signed in to change notification settings

OATML/non-parametric-transformers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

Overview | Abstract | Installation | Examples | Citation

arXiv Python 3.8 Pytorch License Maintenance

Overview

Hi, good to see you here! 👋

Thanks for checking out the code for Non-Parametric Transformers (NPTs).

This codebase will allow you to reproduce experiments from the paper as well as use NPTs for your own research.

Abstract

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introduce a general-purpose deep learning architecture that takes as input the entire dataset instead of processing one datapoint at a time. Our approach uses self-attention to reason about relationships between datapoints explicitly, which can be seen as realizing non-parametric models using parametric attention mechanisms. However, unlike conventional non-parametric models, we let the model learn end-to-end from the data how to make use of other datapoints for prediction. Empirically, our models solve cross-datapoint lookup and complex reasoning tasks unsolvable by traditional deep learning models. We show highly competitive results on tabular data, early results on CIFAR-10, and give insight into how the model makes use of the interactions between points.

Installation

Set up and activate the Python environment by executing

conda env create -f environment.yml
conda activate npt

For now, we recommend installing CUDA <= 10.2:

See issue with CUDA >= 11.0 here.

If you are running this on a system without a GPU, use the above with environment_no_gpu.yml instead.

Examples

We now give some basic examples of running NPT.

NPT downloads all supported datasets automatically, so you don't need to worry about that.

We use wandb to log experimental results. Wandb allows us to conveniently track run progress online. If you do not want wandb enabled, you can run wandb off in the shell where you execute NPT.

For example, run this to explore NPT with default configuration on Breast Cancer

python run.py --data_set breast-cancer

Another example: A run on the poker-hand dataset may look like this

python run.py --data_set poker-hand \
--exp_batch_size 4096 \
--exp_print_every_nth_forward 100

You can find all possible config arguments and descriptions in NPT/configs.py or using python run.py --help.

In scripts/ we provide a list with the runs and correct hyperparameter configurations presented in the paper.

We hope you enjoy using the code and please feel free to reach out with any questions 😊

Citation

If you find this code helpful for your work, please cite our paper Paper as

@article{kossen2021self,
  title={Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning},
  author={Kossen, Jannik and Band, Neil and Gomez, Aidan N. and Lyle, Clare and Rainforth, Tom and Gal, Yarin},
  journal={arXiv:2106.02584},
  year={2021}
}

About

Code for "Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published