-
Notifications
You must be signed in to change notification settings - Fork 6
/
datasets.py
405 lines (304 loc) · 15.7 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import glob
import os
from shutil import move
import numpy as np
import pandas as pd
import torch
import torchvision.datasets as datasets
from PIL import Image
from torch.utils.data import DataLoader, Subset, Dataset
from torchvision import transforms
from torchvision.datasets import CIFAR10, CIFAR100, SVHN, MNIST, STL10, CelebA, ImageFolder
__all__ = ['mnist_dataloader', 'cifar10_dataloader', 'cifar100_dataloader', 'tiny_imagenet_dataloader',
'svhn_dataloader', 'stl10_dataloader', 'celeba_dataloader', 'imagenet_dataloader', 'gtsrb_dataloader']
class NormalizeByChannelMeanStd(torch.nn.Module):
def __init__(self, mean, std):
super(NormalizeByChannelMeanStd, self).__init__()
if not isinstance(mean, torch.Tensor):
mean = torch.tensor(mean)
if not isinstance(std, torch.Tensor):
std = torch.tensor(std)
self.register_buffer("mean", mean)
self.register_buffer("std", std)
def forward(self, tensor):
return self.normalize_fn(tensor, self.mean, self.std)
def extra_repr(self):
return 'mean={}, std={}'.format(self.mean, self.std)
def normalize_fn(self, tensor, mean, std):
"""Differentiable version of torchvision.functional.normalize"""
# here we assume the color channel is in at dim=1
mean = mean[None, :, None, None]
std = std[None, :, None, None]
return tensor.sub(mean).div(std)
def imagenet_dataloader(batch_size=128, data_dir='/data'):
data_dir = os.path.join(data_dir, 'ILSVRC/Data/CLS-LOC')
traindir = os.path.join(data_dir, 'train')
valdir = os.path.join(data_dir, 'val')
resize_transform = []
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose(resize_transform + [
transforms.RandomResizedCrop(288),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True,
num_workers=4, pin_memory=True, sampler=None)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose(resize_transform + [
transforms.CenterCrop(288),
transforms.ToTensor(),
])),
batch_size=batch_size, shuffle=False,
num_workers=4, pin_memory=True)
dataset_normalization = NormalizeByChannelMeanStd(mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225]))
num_classes = 1000
return train_loader, val_loader, val_loader, dataset_normalization, num_classes
def celeba_dataloader(batch_size=64, data_dir='./data'):
train_transform = transforms.Compose([
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.ToTensor()
])
train_set = CelebA(data_dir, "train", transform=train_transform, download=True)
val_set = CelebA(data_dir, "valid", transform=test_transform, download=True)
test_set = CelebA(data_dir, "test", transform=test_transform, download=True)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2,
drop_last=True, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
assert NotImplementedError("Not Ready for Use!")
return train_loader, val_loader, test_loader, None
def mnist_dataloader(batch_size=64, data_dir='./data/', val_ratio=0.1):
train_transform = transforms.Compose([
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.ToTensor()
])
train_size = int(60000 * (1 - val_ratio))
val_size = 60000 - train_size
train_set = Subset(MNIST(data_dir, train=True, transform=train_transform, download=True), list(range(train_size)))
val_set = Subset(MNIST(data_dir, train=True, transform=test_transform, download=True),
list(range(train_size, train_size + val_size)))
test_set = MNIST(data_dir, train=False, transform=test_transform, download=True)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
num_classes = 10
return train_loader, val_loader, test_loader, num_classes
def cifar10_dataloader(batch_size=64, data_dir='./data/', val_ratio=0.1):
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
])
train_size = int(50000 * (1 - val_ratio))
val_size = 50000 - train_size
train_set = Subset(CIFAR10(data_dir, train=True, transform=train_transform, download=True), list(range(train_size)))
val_set = Subset(CIFAR10(data_dir, train=True, transform=test_transform, download=True),
list(range(train_size, train_size + val_size)))
test_set = CIFAR10(data_dir, train=False, transform=test_transform, download=True)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
dataset_normalization = NormalizeByChannelMeanStd(
mean=[0.4914, 0.4822, 0.4465], std=[0.2470, 0.2435, 0.2616])
num_classes = 10
return train_loader, val_loader, test_loader, dataset_normalization, num_classes
def cifar100_dataloader(batch_size=64, data_dir='./data/', val_ratio=0.1):
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
])
train_size = int(50000 * (1 - val_ratio))
val_size = 50000 - train_size
train_set = Subset(CIFAR100(data_dir, train=True, transform=train_transform, download=True),
list(range(train_size)))
val_set = Subset(CIFAR100(data_dir, train=True, transform=test_transform, download=True),
list(range(train_size, train_size + val_size)))
test_set = CIFAR100(data_dir, train=False, transform=test_transform, download=True)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
dataset_normalization = NormalizeByChannelMeanStd(
mean=[0.5071, 0.4865, 0.4409], std=[0.2673, 0.2564, 0.2762])
num_classes = 100
return train_loader, val_loader, test_loader, dataset_normalization, num_classes
def tiny_imagenet_dataloader(batch_size=64, data_dir='./data/tiny_imagenet/', permutation_seed=10):
"""
Prepare for the Tiny-ImageNet dataset
Step 1: wget http://cs231n.stanford.edu/tiny-imagenet-200.zip
Step 2: unzip -qq 'tiny-imagenet-200.zip'
Step 3: rm tiny-imagenet-200.zip (optional)
Code primarily from https://github.com/tjmoon0104/pytorch-tiny-imagenet/blob/master/val_format.py
Args:
batch_size:
data_dir:
permutation_seed:
Returns:
"""
train_transform = transforms.Compose([
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
])
train_path = os.path.join(data_dir, 'train/')
val_path = os.path.join(data_dir, 'val/')
test_path = os.path.join(data_dir, 'test/')
if os.path.exists(os.path.join(val_path, "images")):
if os.path.exists(test_path):
os.rename(test_path, os.path.join(data_dir, "test_original"))
os.mkdir(test_path)
val_dict = {}
val_anno_path = os.path.join(val_path, "val_annotations.txt")
with open(val_anno_path, 'r') as f:
for line in f.readlines():
split_line = line.split('\t')
val_dict[split_line[0]] = split_line[1]
paths = glob.glob('./tiny-imagenet-200/val/images/*')
for path in paths:
file = path.split('/')[-1]
folder = val_dict[file]
if not os.path.exists(val_path + str(folder)):
os.mkdir(val_path + str(folder))
os.mkdir(val_path + str(folder) + '/images')
if not os.path.exists(test_path + str(folder)):
os.mkdir(test_path + str(folder))
os.mkdir(test_path + str(folder) + '/images')
for path in paths:
file = path.split('/')[-1]
folder = val_dict[file]
if len(glob.glob(val_path + str(folder) + '/images/*')) < 25:
dest = val_path + str(folder) + '/images/' + str(file)
else:
dest = test_path + str(folder) + '/images/' + str(file)
move(path, dest)
os.rmdir(os.path.join(val_path, "images"))
np.random.seed(permutation_seed)
train_set = Subset(ImageFolder(train_path, transform=train_transform), range(100000))
val_set = Subset(ImageFolder(val_path, transform=test_transform), range(10000))
test_set = ImageFolder(test_path, transform=test_transform)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
dataset_normalization = NormalizeByChannelMeanStd(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
num_classes = 200
return train_loader, val_loader, test_loader, dataset_normalization, num_classes
def svhn_dataloader(batch_size=64, data_dir='./data/', val_ratio=0.1):
num_workers = 2
train_transform = transforms.Compose([
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
])
train_size = int(73257 * (1 - val_ratio))
val_size = 73257 - train_size
train_set = Subset(SVHN(data_dir, split='train', transform=train_transform, download=True), list(range(train_size)))
val_set = Subset(SVHN(data_dir, split='train', transform=test_transform, download=True),
list(range(train_size, train_size + val_size)))
test_set = SVHN(data_dir, split='test', transform=test_transform, download=True)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=num_workers,
drop_last=True, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True,
drop_last=True)
dataset_normalization = NormalizeByChannelMeanStd(mean=[0.4377, 0.4438, 0.4728], std=[0.1201, 0.1231, 0.1052])
num_classes = 10
return train_loader, val_loader, test_loader, dataset_normalization, num_classes
def stl10_dataloader(batch_size=64, data_dir='./data/'):
train_transform = transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(96),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
])
train_set = STL10(data_dir, split='train', download=True, transform=train_transform)
test_set = STL10(data_dir, split='test', download=True, transform=test_transform)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2,
drop_last=True, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
dataset_normalization = NormalizeByChannelMeanStd(mean=[0.4467, 0.4398, 0.4066], std=[0.2242, 0.2215, 0.2239])
num_classes = 10
return train_loader, test_loader, test_loader, dataset_normalization, num_classes
class GTSRB(Dataset):
base_folder = 'GTSRB'
def __init__(self, root_dir, train=False, transform=None):
self.root_dir = root_dir
self.sub_directory = 'trainingset' if train else 'testset'
self.csv_file_name = 'training.csv' if train else 'test.csv'
csv_file_path = os.path.join(
root_dir, self.base_folder, self.sub_directory, self.csv_file_name)
print("Reading GTSRB data......")
self.csv_data = pd.read_csv(csv_file_path)
self.transform = transform
self.imgs = []
self.labels = []
print("Processing GTSRB data......")
for idx in range(len(self.csv_data)):
img_path = os.path.join(self.root_dir, self.base_folder, self.sub_directory,
self.csv_data.iloc[idx, 0])
img = Image.open(img_path)
classId = self.csv_data.iloc[idx, 1]
self.labels.append(classId)
if self.transform is not None:
img = self.transform(img)
self.imgs.append(img)
self.imgs = torch.stack(self.imgs)
self.labels = torch.tensor(self.labels)
def __len__(self):
return len(self.csv_data)
def __getitem__(self, idx):
return self.imgs[idx], self.labels[idx]
def gtsrb_dataloader(batch_size=128, data_dir='./data/', val_ratio=0.1):
"""
Code Ref: https://github.com/tomlawrenceuk/GTSRB-Dataloader/blob/master/gtsrb_dataset.py
Download dataset from https://onedrive.live.com/?authkey=%21AKNpIXu0xpmVm1I&cid=25B382439BAD237F&id=25B382439BAD237F%21224763&parId=25B382439BAD237F%21224762&action=locate
Unzip the zip file and make the path the data_dir below.
Args:
data_dir: see ABOVE
Returns:
"""
train_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
])
number_train_images = 39208
train_size = int(number_train_images * (1 - val_ratio))
val_size = number_train_images - train_size
train_set = Subset(GTSRB(data_dir, train=True, transform=train_transform), list(range(train_size)))
val_set = Subset(GTSRB(data_dir, train=True, transform=test_transform),
list(range(train_size, train_size + val_size)))
test_set = GTSRB(data_dir, train=False, transform=test_transform)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
dataset_normalization = NormalizeByChannelMeanStd(
mean=[0.3403, 0.3121, 0.3214], std=[0.2724, 0.2608, 0.2669])
num_classes = 43
return train_loader, val_loader, test_loader, dataset_normalization, num_classes