-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_dehazing_training_script.py
276 lines (240 loc) · 9.88 KB
/
image_dehazing_training_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import Dataset
from PIL import Image
class CustomImageFolder(ImageFolder):
def __getitem__(self, index):
"""
Override the default __getitem__ method to return both the image and its index.
"""
path, _ = self.samples[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
# Return the image and its index
return img, index
import os
class CustomDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.image_filenames = os.listdir(os.path.join(root_dir, "hazy"))
def __len__(self):
return len(self.image_filenames)
def __getitem__(self, idx):
img_name = os.path.join(self.root_dir, "hazy", self.image_filenames[idx])
image = Image.open(img_name)
if self.transform:
image = self.transform(image)
# Load corresponding ground truth image
gt_name = os.path.join(self.root_dir, "GT", self.image_filenames[idx])
gt_image = Image.open(gt_name)
if self.transform:
gt_image = self.transform(gt_image)
# Return both the hazy image and its ground truth
return image, gt_image
# Define the CycleGAN model
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out
class Generator(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks):
super(Generator, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=1, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(256)
self.res_blocks = nn.Sequential(*[ResidualBlock(256, 256) for _ in range(num_blocks)])
self.deconv1 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False)
self.bn4 = nn.BatchNorm2d(128)
self.deconv2 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False)
self.bn5 = nn.BatchNorm2d(64)
self.conv4 = nn.Conv2d(64, out_channels, kernel_size=7, stride=1, padding=3, bias=False)
self.tanh = nn.Tanh()
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu(out)
out = self.res_blocks(out)
out = self.deconv1(out)
out = self.bn4(out)
out = self.relu(out)
out = self.deconv2(out)
out = self.bn5(out)
out = self.relu(out)
out = self.conv4(out)
out = self.tanh(out)
return out
class Discriminator(nn.Module):
def __init__(self, in_channels):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=4, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=4, stride=1, padding=1, bias=False)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1, bias=False)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu(out)
out = self.conv4(out)
out = self.bn4(out)
out = self.relu(out)
out = self.conv5(out)
return out
# Define the dataset and data loaders
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = CustomDataset('DL_aug/train', transform=transform)
val_dataset = CustomDataset('DL_aug/val', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False)
# Define the models
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
G_AB = Generator(3, 3, num_blocks=9).to(device)
G_BA = Generator(3, 3, num_blocks=9).to(device)
D_A = Discriminator(3).to(device)
D_B = Discriminator(3).to(device)
# Define the loss functions and optimizers
criterion_gan = nn.MSELoss()
criterion_cycle = nn.L1Loss()
optimizer_G = optim.Adam(
list(G_AB.parameters()) + list(G_BA.parameters()),
lr=0.0002,
betas=(0.5, 0.999)
)
optimizer_D_A = optim.Adam(D_A.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D_B = optim.Adam(D_B.parameters(), lr=0.0002, betas=(0.5, 0.999))
# Training loop
num_epochs = 100
for epoch in range(num_epochs):
epoch_loss_D_A = 0.0
epoch_loss_D_B = 0.0
epoch_loss_G_A = 0.0
epoch_loss_G_B = 0.0
epoch_loss_cycle_A = 0.0
epoch_loss_cycle_B = 0.0
for i, (hazy, gt) in enumerate(train_loader):
hazy = hazy.to(device) # Move input to the same device as model's weights
gt = gt.to(device)
# Update discriminators
optimizer_D_A.zero_grad()
real_A = gt
fake_A = G_BA(hazy)
real_loss_A = criterion_gan(D_A(real_A), torch.ones_like(D_A(real_A)))
fake_loss_A = criterion_gan(D_A(fake_A.detach()), torch.zeros_like(D_A(fake_A)))
loss_D_A = (real_loss_A + fake_loss_A) / 2
loss_D_A.backward()
optimizer_D_A.step()
epoch_loss_D_A += loss_D_A.item()
optimizer_D_B.zero_grad()
real_B = hazy
fake_B = G_AB(gt)
real_loss_B = criterion_gan(D_B(real_B), torch.ones_like(D_B(real_B)))
fake_loss_B = criterion_gan(D_B(fake_B.detach()), torch.zeros_like(D_B(fake_B)))
loss_D_B = (real_loss_B + fake_loss_B) / 2
loss_D_B.backward()
optimizer_D_B.step()
epoch_loss_D_B += loss_D_B.item()
# Update generators
optimizer_G.zero_grad()
fake_A = G_BA(hazy)
fake_B = G_AB(gt)
loss_G_A = criterion_gan(D_A(fake_A), torch.ones_like(D_A(fake_A)))
loss_G_B = criterion_gan(D_B(fake_B), torch.ones_like(D_B(fake_B)))
cycle_A = G_AB(fake_B)
cycle_B = G_BA(fake_A)
loss_cycle_A = criterion_cycle(cycle_A, gt)
loss_cycle_B = criterion_cycle(cycle_B, hazy)
loss_G = loss_G_A + loss_G_B + loss_cycle_A * 10 + loss_cycle_B * 10
loss_G.backward()
optimizer_G.step()
epoch_loss_G_A += loss_G_A.item()
epoch_loss_G_B += loss_G_B.item()
epoch_loss_cycle_A += loss_cycle_A.item()
epoch_loss_cycle_B += loss_cycle_B.item()
# Compute and print average losses for the epoch
epoch_loss_D_A /= len(train_loader)
epoch_loss_D_B /= len(train_loader)
epoch_loss_G_A /= len(train_loader)
epoch_loss_G_B /= len(train_loader)
epoch_loss_cycle_A /= len(train_loader)
epoch_loss_cycle_B /= len(train_loader)
print(f'Epoch [{epoch+1}/{num_epochs}], '
f'Loss_D_A: {epoch_loss_D_A:.4f}, Loss_D_B: {epoch_loss_D_B:.4f}, '
f'Loss_G_A: {epoch_loss_G_A:.4f}, Loss_G_B: {epoch_loss_G_B:.4f}, '
f'Loss_Cycle_A: {epoch_loss_cycle_A:.4f}, Loss_Cycle_B: {epoch_loss_cycle_B:.4f}')
# Save models after every epoch
save_path = "DL/Bhuman_aug"
torch.save({
'G_AB_state_dict': G_AB.state_dict(),
'G_BA_state_dict': G_BA.state_dict(),
'D_A_state_dict': D_A.state_dict(),
'D_B_state_dict': D_B.state_dict(),
'optimizer_G_state_dict': optimizer_G.state_dict(),
'optimizer_D_A_state_dict': optimizer_D_A.state_dict(),
'optimizer_D_B_state_dict': optimizer_D_B.state_dict(),
'epoch': epoch,
'loss_D_A': epoch_loss_D_A,
'loss_D_B': epoch_loss_D_B,
'loss_G_A': epoch_loss_G_A,
'loss_G_B': epoch_loss_G_B,
'loss_cycle_A': epoch_loss_cycle_A,
'loss_cycle_B': epoch_loss_cycle_B,
}, f'{save_path}/models_epoch_{epoch+1}.pth')
# Validation loop
with torch.no_grad():
val_loss = 0.0
for hazy, gt in val_loader:
hazy = hazy.to(device)
gt = gt.to(device)
# Dehaze the images
dehazed = G_AB(hazy)
# Compute validation loss
val_loss += criterion_cycle(dehazed, gt).item() * dehazed.size(0)
val_loss /= len(val_dataset)
# Log validation loss
print(f'Epoch [{epoch+1}/{num_epochs}], Validation Loss: {val_loss:.4f}')