We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
测试环境说明:系统:Ubuntu 22.04.4 LTS 5.15.0-122-generic 驱动:rocm6.1.2 CPU:16核 Intel(R) Xeon(R) w5-3435X 内存:256G 4800 MT/s AMD 7900XTX FP16:123TFLOPS显存:24G显存带宽:964G(满血)
模型分别使用MiniCPM3-4B、MiniCPM3-4B-GPTQ-Int4、Qwen2.5-7B-Instruct-GPTQ-Int8,模型启动命令如下: MiniCPM3-4B:HIP_VISIBLE_DEVICES=1 python3 -m sglang.launch_server --model-path /root/.cache/modelscope/MiniCPM3-4B --port 30000 --mem-fraction-static 0.8 --kv-cache-dtype auto --attention-backend triton --sampling-backend pytorch --trust-remote-code --schedule-conservativeness 0.1 --disable-cuda-graph --enable-torch-compile
MiniCPM3-4B-GPTQ-Int4:HIP_VISIBLE_DEVICES=1 python3 -m sglang.launch_server --model-path /root/.cache/modelscope/MiniCPM3-4B-GPTQ-Int4 --port 30000 --mem-fraction-static 0.8 --kv-cache-dtype auto --attention-backend triton --sampling-backend pytorch --trust-remote-code --schedule-conservativeness 0.1 --disable-cuda-graph --enable-torch-compile --quantization gptq --disable-mla
Qwen2.5-7B-Instruct-GPTQ-Int8:HIP_VISIBLE_DEVICES=1 python3 -m sglang.launch_server --model-path /root/.cache/modelscope/Qwen2.5-7B-Instruct-GPTQ-Int8 --port 30000 --mem-fraction-static 0.8 --kv-cache-dtype auto --attention-backend triton --sampling-backend pytorch --trust-remote-code --schedule-conservativeness 0.1 --disable-cuda-graph --enable-torch-compile --quantization gptq --disable-mla
从性能结果上看,MiniCPM3-4B要差于Qwen2.5-7B-Instruct-GPTQ-Int8,能帮忙看看是哪里的问题吗?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Description / 描述
测试环境说明:系统:Ubuntu 22.04.4 LTS 5.15.0-122-generic 驱动:rocm6.1.2 CPU:16核 Intel(R) Xeon(R) w5-3435X 内存:256G 4800 MT/s
AMD 7900XTX FP16:123TFLOPS显存:24G显存带宽:964G(满血)
Case Explaination / 案例解释
模型分别使用MiniCPM3-4B、MiniCPM3-4B-GPTQ-Int4、Qwen2.5-7B-Instruct-GPTQ-Int8,模型启动命令如下:
MiniCPM3-4B:HIP_VISIBLE_DEVICES=1 python3 -m sglang.launch_server --model-path /root/.cache/modelscope/MiniCPM3-4B --port 30000 --mem-fraction-static 0.8 --kv-cache-dtype auto --attention-backend triton --sampling-backend pytorch --trust-remote-code --schedule-conservativeness 0.1 --disable-cuda-graph --enable-torch-compile
MiniCPM3-4B-GPTQ-Int4:HIP_VISIBLE_DEVICES=1 python3 -m sglang.launch_server --model-path /root/.cache/modelscope/MiniCPM3-4B-GPTQ-Int4 --port 30000 --mem-fraction-static 0.8 --kv-cache-dtype auto --attention-backend triton --sampling-backend pytorch --trust-remote-code --schedule-conservativeness 0.1 --disable-cuda-graph --enable-torch-compile --quantization gptq --disable-mla
Qwen2.5-7B-Instruct-GPTQ-Int8:HIP_VISIBLE_DEVICES=1 python3 -m sglang.launch_server --model-path /root/.cache/modelscope/Qwen2.5-7B-Instruct-GPTQ-Int8 --port 30000 --mem-fraction-static 0.8 --kv-cache-dtype auto --attention-backend triton --sampling-backend pytorch --trust-remote-code --schedule-conservativeness 0.1 --disable-cuda-graph --enable-torch-compile --quantization gptq --disable-mla
从性能结果上看,MiniCPM3-4B要差于Qwen2.5-7B-Instruct-GPTQ-Int8,能帮忙看看是哪里的问题吗?
The text was updated successfully, but these errors were encountered: