-
-
Notifications
You must be signed in to change notification settings - Fork 45
/
reward.py
266 lines (241 loc) · 8.68 KB
/
reward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import json
import random
from pytorch_lightning import seed_everything
from torchvision import transforms
import init_proj_path
from reward_utils import *
VERSION2SPECS = {
"vwm": {
"config": "configs/inference/vista.yaml",
"ckpt": "ckpts/vista.safetensors"
}
}
DATASET2SOURCES = {
"NUSCENES": {
"data_root": "data/nuscenes",
"anno_file": "annos/nuScenes_val.json"
},
"IMG": {
"data_root": "image_folder"
}
}
def parse_args(**parser_kwargs):
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"--version",
type=str,
default="vwm",
help="model version"
)
parser.add_argument(
"--dataset",
type=str,
default="NUSCENES",
help="dataset name"
)
parser.add_argument(
"--save",
type=str,
default="outputs",
help="directory to save samples"
)
parser.add_argument(
"--action",
type=str,
default="traj",
help="action mode for control, such as traj, cmd, steer, goal"
)
parser.add_argument(
"--n_frames",
type=int,
default=25,
help="number of frames for each round"
)
parser.add_argument(
"--n_conds",
type=int,
default=1,
help="number of initial condition frames for the first round"
)
parser.add_argument(
"--ens_size",
type=int,
default=5,
help="number of samples per case"
)
parser.add_argument(
"--seed",
type=int,
default=23,
help="random seed for seed_everything"
)
parser.add_argument(
"--height",
type=int,
default=576,
help="target height of the generated video"
)
parser.add_argument(
"--width",
type=int,
default=1024,
help="target width of the generated video"
)
parser.add_argument(
"--cfg_scale",
type=float,
default=2.5,
help="scale of the classifier-free guidance"
)
parser.add_argument(
"--cond_aug",
type=float,
default=0.0,
help="strength of the noise augmentation"
)
parser.add_argument(
"--n_steps",
type=int,
default=10,
help="number of sampling steps"
)
parser.add_argument(
"--rand_gen",
action="store_false",
help="whether to generate samples randomly or sequentially"
)
parser.add_argument(
"--low_vram",
action="store_true",
help="whether to save memory or not"
)
return parser
def get_sample(selected_index=0, dataset_name="NUSCENES", num_frames=25, action_mode="free"):
dataset_dict = DATASET2SOURCES[dataset_name]
action_dict = None
if dataset_name == "IMG":
image_list = os.listdir(dataset_dict["data_root"])
total_length = len(image_list)
while selected_index >= total_length:
selected_index -= total_length
image_file = image_list[selected_index]
path_list = [os.path.join(dataset_dict["data_root"], image_file)] * num_frames
else:
with open(dataset_dict["anno_file"], "r") as anno_json:
all_samples = json.load(anno_json)
total_length = len(all_samples)
while selected_index >= total_length:
selected_index -= total_length
sample_dict = all_samples[selected_index]
path_list = list()
if dataset_name == "NUSCENES":
for index in range(num_frames):
image_path = os.path.join(dataset_dict["data_root"], sample_dict["frames"][index])
assert os.path.exists(image_path), image_path
path_list.append(image_path)
action_dict = dict()
if action_mode == "traj" or action_mode == "trajectory":
action_dict["trajectory"] = torch.tensor(sample_dict["traj"][2:])
elif action_mode == "cmd" or action_mode == "command":
action_dict["command"] = torch.tensor(sample_dict["cmd"])
elif action_mode == "steer":
# scene might be empty
if sample_dict["speed"]:
action_dict["speed"] = torch.tensor(sample_dict["speed"][1:])
# scene might be empty
if sample_dict["angle"]:
action_dict["angle"] = torch.tensor(sample_dict["angle"][1:]) / 780
elif action_mode == "goal":
# point might be invalid
if sample_dict["z"] > 0 and 0 < sample_dict["goal"][0] < 1600 and 0 < sample_dict["goal"][1] < 900:
action_dict["goal"] = torch.tensor([
sample_dict["goal"][0] / 1600,
sample_dict["goal"][1] / 900
])
else:
raise ValueError(f"Unsupported action mode {action_mode}")
else:
raise ValueError(f"Invalid dataset {dataset_name}")
return path_list, selected_index, total_length, action_dict
def load_img(file_name, target_height=320, target_width=576, device="cuda"):
if file_name is not None:
image = Image.open(file_name)
if not image.mode == "RGB":
image = image.convert("RGB")
else:
raise ValueError(f"Invalid image file {file_name}")
ori_w, ori_h = image.size
# print(f"Loaded input image of size ({ori_w}, {ori_h})")
if ori_w / ori_h > target_width / target_height:
tmp_w = int(target_width / target_height * ori_h)
left = (ori_w - tmp_w) // 2
right = (ori_w + tmp_w) // 2
image = image.crop((left, 0, right, ori_h))
elif ori_w / ori_h < target_width / target_height:
tmp_h = int(target_height / target_width * ori_w)
top = (ori_h - tmp_h) // 2
bottom = (ori_h + tmp_h) // 2
image = image.crop((0, top, ori_w, bottom))
image = image.resize((target_width, target_height), resample=Image.LANCZOS)
if not image.mode == "RGB":
image = image.convert("RGB")
image = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2.0 - 1.0)
])(image)
return image.to(device)
if __name__ == "__main__":
parser = parse_args()
opt, unknown = parser.parse_known_args()
set_lowvram_mode(opt.low_vram)
version_dict = VERSION2SPECS[opt.version]
model = init_model(version_dict)
unique_keys = set([x.input_key for x in model.conditioner.embedders])
sample_index = 0
while sample_index >= 0:
seed_everything(opt.seed)
frame_list, sample_index, dataset_length, action_dict = get_sample(sample_index,
opt.dataset,
opt.n_frames,
opt.action)
img_seq = list()
for each_path in frame_list:
img = load_img(each_path, opt.height, opt.width)
img_seq.append(img)
images = torch.stack(img_seq)
value_dict = init_embedder_options(unique_keys)
cond_img = img_seq[0][None]
value_dict["cond_frames_without_noise"] = cond_img
value_dict["cond_aug"] = opt.cond_aug
value_dict["cond_frames"] = cond_img + opt.cond_aug * torch.randn_like(cond_img)
if action_dict is not None:
for key, value in action_dict.items():
value_dict[key] = value
guider = "VanillaCFG"
sampler = init_sampling(guider=guider, steps=opt.n_steps, cfg_scale=opt.cfg_scale, num_frames=opt.n_frames)
uc_keys = ["cond_frames", "cond_frames_without_noise", "command", "trajectory", "speed", "angle", "goal"]
out = do_sample(
images,
model,
sampler,
value_dict,
num_frames=opt.n_frames,
ensemble_size=opt.ens_size,
force_uc_zero_embeddings=uc_keys,
initial_cond_indices=[index for index in range(opt.n_conds)]
)
if isinstance(out, (tuple, list)):
inputs, reward = out
real_path = os.path.join(opt.save, "real")
perform_save_locally(real_path, inputs, "videos", opt.dataset, sample_index)
perform_save_locally(real_path, inputs, "grids", opt.dataset, sample_index)
perform_save_locally(real_path, inputs, "images", opt.dataset, sample_index)
else:
raise TypeError
if opt.rand_gen:
sample_index += random.randint(1, dataset_length - 1)
else:
sample_index += 1
if dataset_length <= sample_index:
sample_index = -1