-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels_database_grid.cpp
executable file
·562 lines (499 loc) · 22.1 KB
/
models_database_grid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
* models_database.cpp
*
* File that contains all kind of methods
* used to generate models for the pulsation/noise
*
* Created on: 20 Apr 2016
* Author: obenomar
*/
/**
* @file models_database_grid.cpp
* @brief File that contains models (for grid only)
*
* Header file that contains all kind of methods used to generate models for the pulsation/noise when in grid mode.
*
*
* @date 20 Apr 2016
* @author obenomar
*/
# include <iostream>
# include <iomanip>
#include <fstream>
# include <Eigen/Dense>
#include "models_database_grid.h"
#include "interpol.h"
#include "linfit.h"
#include "noise_models.h"
using Eigen::VectorXd;
using Eigen::VectorXi;
using Eigen::MatrixXd;
void generate_cfg_from_refstar_HWscaled(VectorXd input_params, Model_data input_model, std::string file_ref_star, std::string file_out_modes, std::string file_out_noise){
// ----- Constants ------
const double PI = 3.141592653589793238462643;
const double G=6.667e-8;
const double Teff_sun=5777;
const double Dnu_sun=135.1;
const double numax_sun=3150;
const double R_sun=6.96342e5;
const double M_sun=1.98855e30;
const double rho_sun=M_sun*1e3/(4*PI*pow(R_sun*1e5,3)/3);
const std::string delimiter=" ";
const bool verbose_data=0;
const int lmax=3, Nmax_min=10; // We simulate l=0,1,2,3
//std::cout << " generate_cfg_from_refstar_HWscaled" << std::endl;
VectorXd Visibilities(4);
Visibilities.setOnes();
Data_Nd data_ref;
// ----- Used Constant and variables of the reference star -----
const int pref_freq=1, pref_h=2, pref_w=3, pref_n=11; // positions in the reference table for frequencies, heights, widths and the local noise
int Nmax, k, el, en;
double dnu_ref, numax_ref, norm;
std::vector<int> pos;
VectorXi pos2;
VectorXd tmp, tmp2, ones, x_ref, height_ref, fit;
MatrixXd nu_ref, w_ref, h_ref, a_ref, hnr_ref;
// --------- Variables used for the simulated star ---------
std::string varname;
int Nmax_star;
double c, dnu_star, numax_star;
VectorXd x, gamma, height, hnr, noise_star;
MatrixXd nu, h, w, s_a1, s_eta, s_a3, s_asym, s_b, s_alfa, inclination, mode_params;
// -----------------------------
// ------- Deploy the parameters of the simulation given by input_params ------
double Mind=input_params[0];
double maxHNR=input_params[1];
double Gamma_Hmax_star=input_params[2];
double a1=input_params[3];
double inc=input_params[4];
MatrixXd input_noise(3,3);
input_noise.row(0)=input_params.segment(5,3);
input_noise.row(1)=input_params.segment(8,3);
input_noise(2, 0)=input_params[11];
input_noise(2, 1)=-2;
input_noise(2, 2)=-2;
//std::cout << "input_noise=" << input_noise << std::endl;
// -------- Extracting numax_star and Dnu_star -------
varname="dnu";
pos2=where_strXi(input_model.labels_params, varname);
dnu_star=input_model.params[pos2[0]];
varname="numax";
pos2=where_strXi(input_model.labels_params, varname);
numax_star=input_model.params[pos2[0]];
// ------------------------------------
std::cout << " dnu_star=" << dnu_star << std::endl;
std::cout << " numax_star=" << numax_star << std::endl;
// ------- Read the parameters of the reference star ----------
data_ref=read_data_ascii_Ncols(file_ref_star, delimiter, verbose_data);
// Sorting usefull data, perform requirement checks and compute mode HNR
if (data_ref.data.col(0).maxCoeff() < lmax){
std::cout << " --------- Reference star inputs: Requirements not fullfilled --------- " << std::endl;
std::cout << " This spectrum simulator requires reference widths, height and noise level" << std::endl;
std::cout << " for modes of degree l=0,1,2,3. The current lmax=" << data_ref.data.col(0).maxCoeff() << std::endl;
std::cout << " is unsuficient. Please give valid reference parameters for the reference star" << std::endl;
std::cout << " The program will exit now" << std::endl;
exit(EXIT_SUCCESS);
}
for(el=0; el<lmax+1;el++){
pos=where_index(data_ref.data.col(0), "=", el);
if(el == 0){
if(pos.size() >= Nmax_min){
Nmax=pos.size()+2; // We add 2 because of boundary conditions: nu=0 ==> w=h=a=hnr=0. Same at nu=10000.
std::cout << "Nmax=" << Nmax << std::endl;
nu_ref.resize(lmax+1, Nmax);
w_ref.resize(lmax+1, Nmax);
h_ref.resize(lmax+1, Nmax);
a_ref.resize(lmax+1, Nmax);
hnr_ref.resize(lmax+1, Nmax);
} else{
std::cout << " --------- Reference star inputs: Requirements not fullfilled --------- " << std::endl;
std::cout << " The number of radial order should be at least Nmax=" << Nmax_min << std::endl;
std::cout << " Please add modes for the reference star " << std::endl;
std::cout << " The program will exit now" << std::endl;
exit(EXIT_SUCCESS);
}
} else{
if(pos.size() != Nmax-2){
std::cout << " --------- Reference star inputs: Requirements not fullfilled --------- " << std::endl;
std::cout << " The number of radial order for each degree should be the same " << std::endl;
std::cout << " Please check your reference parameters for the reference star " << std::endl;
std::cout << " The program will exit now" << std::endl;
exit(EXIT_SUCCESS);
}
}
// ----- Imposing boundary conditions ------
nu_ref(el,0)=0;
w_ref(el,0)=0;
h_ref(el,0)=0;
a_ref(el,0)=0;
hnr_ref(el,0)=0;
nu_ref(el,Nmax-1)=10000.; // Value at which we should not expect to detect pulsations anytime soon...
w_ref(el,Nmax-1)=50;
h_ref(el,Nmax-1)=0.0001;
a_ref(el,Nmax-1)=0;
hnr_ref(el,Nmax-1)=0;
// ----------------------------------------
en=1;
for(int ii=0; ii<pos.size();ii++){
nu_ref(el,en)=data_ref.data(pos[ii],pref_freq);
w_ref(el,en)=data_ref.data(pos[ii],pref_w);
h_ref(el,en)=data_ref.data(pos[ii],pref_h);
a_ref(el,en)=sqrt(PI*h_ref(el,en)*w_ref(el,en)); // mode amplitude... used for determining numax(el)
hnr_ref(el,en)=h_ref(el,en)/data_ref.data(pos[ii],pref_n);
//std::cout << "(" << el << "," << en << ")" << data_ref.data(pos[ii],pref_freq) << " " << data_ref.data(pos[ii],pref_w) << " " << data_ref.data(pos[ii],pref_h) << " " << sqrt(PI*h_ref(el,en)*w_ref(el,en)) << " " << h_ref(el,en)/data_ref.data(pos[ii],pref_n) << std::endl;
en=en+1;
}
}
// Getting numax
numax_ref=0;
norm=0;
for(el=0;el<lmax+1;el++){
pos=where_index(a_ref.row(el), "=", a_ref.row(el).maxCoeff());
numax_ref=numax_ref + nu_ref(el, pos[0]) * a_ref.row(el).maxCoeff(); // Weighted mean
norm=norm + a_ref.row(el).maxCoeff();
}
numax_ref=numax_ref/norm;
// Getting \Delta\nu
ones.resize(Nmax-2);
ones.setOnes();
std::cout << " numax_ref=" << numax_ref << std::endl;
tmp=nu_ref.row(0).segment(1,Nmax-2);
pos=where_index(tmp/numax_ref-ones, ">=", -0.25);// AND nu_l0/numax_star-1 le 0.2);
tmp2.resize(pos.size());
for(int i=0; i<pos.size(); i++){tmp2[i]=tmp[pos[i]];}
//std::cout << "tmp2=" << tmp2 << std::endl;
ones.setOnes(tmp2.size());
pos=where_index(tmp2/numax_ref-ones, "<=", 0.25);
tmp.resize(pos.size());
for(int i=0; i<pos.size(); i++){tmp[i]=tmp2[pos[i]];}
//std::cout << "tmp=" << tmp << std::endl;
if(tmp2.size() <= 3){
std::cout << "Warning: small vector of frequencies detected for Mind=" << Mind << std::endl;
std::cout << " using the full dataset of frequencies for calculating Deltanu" << std::endl;
//exit(EXIT_SUCCESS);
tmp2.resize(nu_ref.col(0).size());
tmp2=nu_ref.col(0);
}
tmp.setLinSpaced(tmp2.size(), 0, tmp2.size()-1);
fit=linfit(tmp, tmp2); // Use a linear fit of the modes around numax to get Delta\nu
dnu_ref=fit[0];
std::cout << " dnu_ref=" << dnu_ref << std::endl;
// --------- Variables size allocation ---------
Nmax_star=10000.; // large value to begin with
for(el=0; el<lmax+1; el++){
pos=where_index(input_model.freqs.col(0), "=", el);
if (pos.size() < Nmax_star){ Nmax_star=pos.size();} // Keep the minimal number of radial order from the list of modes (ensure that Nmax_star is same for all l)
}
nu.resize(lmax+1, Nmax_star), h.resize(lmax+1, Nmax_star), w.resize(lmax+1, Nmax_star), s_a1.resize(lmax+1, Nmax_star), s_eta.resize(lmax+1, Nmax_star),
s_a3.resize(lmax+1, Nmax_star), s_asym.resize(lmax+1, Nmax_star), s_b.resize(lmax+1, Nmax_star), s_alfa.resize(lmax+1, Nmax_star), inclination.resize(lmax+1, Nmax_star),
mode_params.resize((lmax+1)*Nmax_star, 11);
// Initialize variables for second order effects to neutral values (e.g. 0)
s_eta.setZero(); //Neglect the centrifugal effects
s_a3.setZero(); //Neglect the first order effect of the latitudinal rotation
s_asym.setZero(); //Neglect the mode asymmetry
s_b.setZero(); // Do not consider any additional frequency-dependent star distorsion
s_alfa.setOnes(); // Do not consider any additional frequency-dependent star distorsion
// ---------- Setting up the variables for the simulated star ----------
for(el=0; el<lmax+1; el++){
// ------- Organise frequencies in a (l,n) table ---------
pos=where_index(input_model.freqs.col(0), "=", el);
for(int i=0;i<Nmax_star;i++){
nu(el,i)=input_model.freqs(pos[i],2);
}
// ----- Perform rescalings -------
x_ref.resize(Nmax);
for(int en=0; en<Nmax;en++){
x_ref[en]=(nu_ref(el,en)-numax_ref)/dnu_ref;
}
x.resize(Nmax_star);
for(int en=0; en<Nmax_star;en++){
x[en]=(nu(el,en)-numax_star)/dnu_star;
}
gamma.resize(Nmax_star);
for(int en=0; en<Nmax_star; en++){
gamma[en]=lin_interpol(x_ref, w_ref.row(el), x[en]);
}
hnr.resize(Nmax_star);
for(int en=0; en<Nmax_star; en++){
hnr[en]=lin_interpol(x_ref, hnr_ref.row(el), x[en]);
}
if(el==0){
c=maxHNR/hnr.maxCoeff(); // we will use l=0 to compute the new maxHNR
}
noise_star=harvey_1985(input_noise, nu.row(el)); // the local noise level of the simulated star
// We solve: max(HNR_star) = c max(HNR_ref) ==> c=max(HNR_star)/max(HNR_ref)
// We then use c to rescale the heights hstar(nu) noting that: c* href(nu)/Nref(nu) = hstar(nu)/Nstar(nu)
height.resize(Nmax_star);
for (int en=0; en<Nmax_star; en++){
height[en]=hnr[en] * c * noise_star[en];
}
pos=where_index(height, "=", height.maxCoeff());
gamma=gamma * Gamma_Hmax_star/gamma(pos[0]); // Rescaling of the Widths in the y-axis. Gamma_star(pos[0]) is the width at Hmax
// --------------- Other parameters setup -----------------
h.row(el)=height;
w.row(el)=gamma;
s_a1.row(el).setConstant(a1);
inclination.row(el).setConstant(inc);
}
// ---------- Summarizing the information into suitable inputs for the writting function -------------
for(el=0; el<lmax+1; el++){
for(k=el*Nmax_star; k<(el+1)*Nmax_star; k++){
mode_params(k,0)=el;
mode_params(k,1)=nu(el , k-el*Nmax_star);
mode_params(k,2)=h(el , k-el*Nmax_star);
mode_params(k,3)=w(el , k-el*Nmax_star);
mode_params(k,4)=s_a1(el , k-el*Nmax_star);
mode_params(k,5)=s_eta(el , k-el*Nmax_star);
mode_params(k,6)=s_a3(el , k-el*Nmax_star);
mode_params(k,7)=s_b(el , k-el*Nmax_star);
mode_params(k,8)=s_alfa(el , k-el*Nmax_star);
mode_params(k,9)=s_asym(el , k-el*Nmax_star);
mode_params(k,10)=inclination(el , k-el*Nmax_star);
}
}
// A FUNCTION THAT WRITES THE PARAMETERS
write_star_mode_params_act_asym(mode_params, file_out_modes);
// A FUNCTION THAT WRITES THE Noise
write_star_noise_params(input_noise, file_out_noise);
}
/*
* This procedure :
* - Use a set of frequencies from models (given in input_model)g++ -O3 -I ../eigen -I ../ -fopenmp -lutil -lboost_iostreams -lboost_system -lboost_filesystem -lgsl -lgslcblas
* - Use a reference star to generate/rescale Widths and Heights profiles. Visibilities are calculated there. The input format is a simple Matrix-formated table
* - Implement a1, a3, inclination
* - Implement A Single Harvey profile noise which scales with numax (+ a White Noise). The definition of the Harvey parameters are as defined by Karoff et al. 2010
* Recommended coefficients for the scaling are Pgran = A numax^B + C with A=10^-4 and B=-2, C=0. t_gran = A numax^B + C with A=1 and B=-1 and C=0
*/
void generate_cfg_from_refstar_HWscaled_GRANscaled(VectorXd input_params, Model_data input_model, std::string file_ref_star, std::string file_out_modes, std::string file_out_noise){
// ----- Constants ------
const double PI = 3.141592653589793238462643;
const double G=6.667e-8;
const double Teff_sun=5777;
const double Dnu_sun=135.1;
const double numax_sun=3150;
const double R_sun=6.96342e5;
const double M_sun=1.98855e30;
const double rho_sun=M_sun*1e3/(4*PI*pow(R_sun*1e5,3)/3);
const std::string delimiter=" ";
const bool verbose_data=0;
const int lmax=3, Nmax_min=10; // We simulate l=0,1,2,3
VectorXd Visibilities(4);
Visibilities.setOnes();
Data_Nd data_ref;
// ----- Used Constant and variables of the reference star -----
const int pref_freq=1, pref_h=2, pref_w=3, pref_n=11; // positions in the reference table for frequencies, heights, widths and the local noise
int Nmax, k, el, en;
double dnu_ref, numax_ref, norm;
std::vector<int> pos;
VectorXi pos2;
VectorXd tmp, tmp2, ones, x_ref, height_ref, fit;
MatrixXd nu_ref, w_ref, h_ref, a_ref, hnr_ref;
// --------- Variables used for the simulated star ---------
std::string varname;
int Nmax_star;
double c, dnu_star, numax_star;
VectorXd x, gamma, height, hnr, noise_star;
MatrixXd nu, h, w, s_a1, s_eta, s_a3, s_asym, s_b, s_alfa, inclination, mode_params;
// -----------------------------
// ------- Deploy the parameters of the simulation given by input_params ------
double Mind=input_params[0];
double maxHNR=input_params[1];
double Gamma_Hmax_star=input_params[2];
double a1=input_params[3];
double inc=input_params[4];
double H, tau, p; // Coefficient for the noise
MatrixXd input_noise(2,3);
// -------- Extracting numax_star and Dnu_star -------
varname="dnu";
pos2=where_strXi(input_model.labels_params, varname);
dnu_star=input_model.params[pos2[0]];
varname="numax";
pos2=where_strXi(input_model.labels_params, varname);
numax_star=input_model.params[pos2[0]];
// ------------------------------------
std::cout << " dnu_star=" << dnu_star << std::endl;
std::cout << " numax_star=" << numax_star << std::endl;
// --------- Scaling the noise according to the given parameters --------
tau=input_params[8] * pow(numax_star*1e-6,input_params[9]) + input_params[10]; // Granulation timescale (in seconds)
H=input_params[5] * pow(numax_star*1e-6,input_params[6]) + input_params[7]; // Granulation Amplitude
H=H/tau ; //This is due to the used definition for the Harvey profile (conversion from Hz to microHz)
tau=tau/1000. ; //conversion in ksec
p=2;// Fixed power law
input_noise(0,0)=H;
input_noise(0,1)=tau;
input_noise(0,2)=p;
input_noise(1, 0)=input_params[11]; // White noise
input_noise(1, 1)=-2;
input_noise(1, 2)=-2;
// ------- Read the parameters of the reference star ----------
data_ref=read_data_ascii_Ncols(file_ref_star, delimiter, verbose_data);
// Sorting usefull data, perform requirement checks and compute mode HNR
if (data_ref.data.col(0).maxCoeff() < lmax){
std::cout << " --------- Reference star inputs: Requirements not fullfilled --------- " << std::endl;
std::cout << " This spectrum simulator requires reference widths, height and noise level" << std::endl;
std::cout << " for modes of degree l=0,1,2,3. The current lmax=" << data_ref.data.col(0).maxCoeff() << std::endl;
std::cout << " is unsuficient. Please give valid reference parameters for the reference star" << std::endl;
std::cout << " The program will exit now" << std::endl;
exit(EXIT_SUCCESS);
}
for(el=0; el<lmax+1;el++){
pos=where_index(data_ref.data.col(0), "=", el);
if(el == 0){
if(pos.size() >= Nmax_min){
Nmax=pos.size()+2; // We add 2 because of boundary conditions: nu=0 ==> w=h=a=hnr=0. Same at nu=10000.
nu_ref.resize(lmax+1, Nmax);
w_ref.resize(lmax+1, Nmax);
h_ref.resize(lmax+1, Nmax);
a_ref.resize(lmax+1, Nmax);
hnr_ref.resize(lmax+1, Nmax);
} else{
std::cout << " --------- Reference star inputs: Requirements not fullfilled --------- " << std::endl;
std::cout << " The number of radial order should be at least Nmax=" << Nmax_min << std::endl;
std::cout << " Please add modes for the reference star " << std::endl;
std::cout << " The program will exit now" << std::endl;
exit(EXIT_SUCCESS);
}
} else{
if(pos.size() != Nmax-2){
std::cout << " --------- Reference star inputs: Requirements not fullfilled --------- " << std::endl;
std::cout << " The number of radial order for each degree should be the same " << std::endl;
std::cout << " Please check your reference parameters for the reference star " << std::endl;
std::cout << " The program will exit now" << std::endl;
exit(EXIT_SUCCESS);
}
}
// ----- Imposing boundary conditions ------
nu_ref(el,0)=0;
w_ref(el,0)=0;
h_ref(el,0)=0;
a_ref(el,0)=0;
hnr_ref(el,0)=0;
nu_ref(el,Nmax-1)=10000.; // Value at which we should not expect to detect pulsations anytime soon...
w_ref(el,Nmax-1)=50;
h_ref(el,Nmax-1)=0.0001;
a_ref(el,Nmax-1)=0;
hnr_ref(el,Nmax-1)=0;
// ----------------------------------------
//for(en=1; en<Nmax-1;en++){
en=1;
for(int ii=0; ii<pos.size();ii++){
nu_ref(el,en)=data_ref.data(pos[ii],pref_freq);
w_ref(el,en)=data_ref.data(pos[ii],pref_w);
h_ref(el,en)=data_ref.data(pos[ii],pref_h);
a_ref(el,en)=sqrt(PI*h_ref(el,en)*w_ref(el,en)); // mode amplitude... used for determining numax(el)
hnr_ref(el,en)=h_ref(el,en)/data_ref.data(pos[ii],pref_n);
en=en+1;
}
}
// Getting numax
numax_ref=0;
norm=0;
for(el=0;el<lmax+1;el++){
pos=where_index(a_ref.row(el), "=", a_ref.row(el).maxCoeff());
numax_ref=numax_ref + nu_ref(el, pos[0]) * a_ref.row(el).maxCoeff(); // Weighted mean
norm=norm + a_ref.row(el).maxCoeff();
}
numax_ref=numax_ref/norm;
// Getting \Delta\nu
ones.resize(Nmax-2);
ones.setOnes();
std::cout << " numax_ref=" << numax_ref << std::endl;
tmp=nu_ref.row(0).segment(1,Nmax-2);
pos=where_index(tmp/numax_ref-ones, ">=", -0.25);// AND nu_l0/numax_star-1 le 0.2);
tmp2.resize(pos.size());
for(int i=0; i<pos.size(); i++){tmp2[i]=tmp[pos[i]];}
ones.setOnes(tmp2.size());
pos=where_index(tmp2/numax_ref-ones, "<=", 0.25);
tmp.resize(pos.size());
for(int i=0; i<pos.size(); i++){tmp[i]=tmp2[pos[i]];}
//std::cout << "tmp=" << tmp << std::endl;
if(tmp2.size() <= 3){
std::cout << "Warning: small vector of frequencies detected for Mind=" << Mind << std::endl;
std::cout << " using the full dataset of frequencies for calculating Deltanu" << std::endl;
tmp2.resize(nu_ref.col(0).size());
tmp2=nu_ref.col(0);
}
tmp.setLinSpaced(tmp2.size(), 0, tmp2.size()-1);
fit=linfit(tmp, tmp2); // Use a linear fit of the modes around numax to get Delta\nu
dnu_ref=fit[0];
std::cout << " dnu_ref=" << dnu_ref << std::endl;
// --------- Variables size allocation ---------
Nmax_star=10000.; // large value to begin with
for(el=0; el<lmax+1; el++){
pos=where_index(input_model.freqs.col(0), "=", el);
if (pos.size() < Nmax_star){ Nmax_star=pos.size();} // Keep the minimal number of radial order from the list of modes (ensure that Nmax_star is same for all l)
}
nu.resize(lmax+1, Nmax_star), h.resize(lmax+1, Nmax_star), w.resize(lmax+1, Nmax_star), s_a1.resize(lmax+1, Nmax_star), s_eta.resize(lmax+1, Nmax_star),
s_a3.resize(lmax+1, Nmax_star), s_asym.resize(lmax+1, Nmax_star), s_b.resize(lmax+1, Nmax_star), s_alfa.resize(lmax+1, Nmax_star), inclination.resize(lmax+1, Nmax_star),
mode_params.resize((lmax+1)*Nmax_star, 11);
// Initialize variables for second order effects to neutral values (e.g. 0)
s_eta.setZero(); //Neglect the centrifugal effects
s_a3.setZero(); //Neglect the first order effect of the latitudinal rotation
s_asym.setZero(); //Neglect the mode asymmetry
s_b.setZero(); // Do not consider any additional frequency-dependent star distorsion
s_alfa.setOnes(); // Do not consider any additional frequency-dependent star distorsion
// -----------------------------
// ---------- Setting up the variables for the simulated star ----------
for(el=0; el<lmax+1; el++){
// ------- Organise frequencies in a (l,n) table ---------
pos=where_index(input_model.freqs.col(0), "=", el);
for(int i=0;i<Nmax_star;i++){
nu(el,i)=input_model.freqs(pos[i],2);
}
// -------------------------------------------------------
// ----- Perform rescalings -------
x_ref.resize(Nmax);
for(int en=0; en<Nmax;en++){
x_ref[en]=(nu_ref(el,en)-numax_ref)/dnu_ref;
}
x.resize(Nmax_star);
for(int en=0; en<Nmax_star;en++){
x[en]=(nu(el,en)-numax_star)/dnu_star;
}
gamma.resize(Nmax_star);
for(int en=0; en<Nmax_star; en++){
gamma[en]=lin_interpol(x_ref, w_ref.row(el), x[en]);
}
hnr.resize(Nmax_star);
for(int en=0; en<Nmax_star; en++){
hnr[en]=lin_interpol(x_ref, hnr_ref.row(el), x[en]);
}
if(el==0){
c=maxHNR/hnr.maxCoeff(); // we will use l=0 to compute the new maxHNR
}
noise_star=harvey_1985(input_noise, nu.row(el)); // the local noise level of the simulated star
// We solve: max(HNR_star) = c max(HNR_ref) ==> c=max(HNR_star)/max(HNR_ref)
// We then use c to rescale the heights hstar(nu) noting that: c* href(nu)/Nref(nu) = hstar(nu)/Nstar(nu)
height.resize(Nmax_star);
for (int en=0; en<Nmax_star; en++){
height[en]=hnr[en] * c * noise_star[en];
}
pos=where_index(height, "=", height.maxCoeff());
gamma=gamma * Gamma_Hmax_star/gamma(pos[0]); // Rescaling of the Widths in the y-axis. Gamma_star(pos[0]) is the width at Hmax
// --------------- Other parameters setup -----------------
h.row(el)=height;
w.row(el)=gamma;
s_a1.row(el).setConstant(a1);
inclination.row(el).setConstant(inc);
}
// ---------- Summarizing the information into suitable inputs for the writting function -------------
for(el=0; el<lmax+1; el++){
for(k=el*Nmax_star; k<(el+1)*Nmax_star; k++){
mode_params(k,0)=el;
mode_params(k,1)=nu(el , k-el*Nmax_star);
mode_params(k,2)=h(el , k-el*Nmax_star);
mode_params(k,3)=w(el , k-el*Nmax_star);
mode_params(k,4)=s_a1(el , k-el*Nmax_star);
mode_params(k,5)=s_eta(el , k-el*Nmax_star);
mode_params(k,6)=s_a3(el , k-el*Nmax_star);
mode_params(k,7)=s_b(el , k-el*Nmax_star);
mode_params(k,8)=s_alfa(el , k-el*Nmax_star);
mode_params(k,9)=s_asym(el , k-el*Nmax_star);
mode_params(k,10)=inclination(el , k-el*Nmax_star);
}
}
// A FUNCTION THAT WRITES THE PARAMETERS
write_star_mode_params_act_asym(mode_params, file_out_modes);
// A FUNCTION THAT WRITES THE Noise
write_star_noise_params(input_noise, file_out_noise);
}