forked from ironandstee1/pkmn-auto-hatcher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJoystick.c
275 lines (222 loc) · 7.32 KB
/
Joystick.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
Nintendo Switch Fightstick - Proof-of-Concept
Based on the LUFA library's Low-Level Joystick Demo
(C) Dean Camera
Based on the HORI's Pokken Tournament Pro Pad design
(C) HORI
This project implements a modified version of HORI's Pokken Tournament Pro Pad
USB descriptors to allow for the creation of custom controllers for the
Nintendo Switch. This also works to a limited degree on the PS3.
Since System Update v3.0.0, the Nintendo Switch recognizes the Pokken
Tournament Pro Pad as a Pro Controller. Physical design limitations prevent
the Pokken Controller from functioning at the same level as the Pro
Controller. However, by default most of the descriptors are there, with the
exception of Home and Capture. Descriptor modification allows us to unlock
these buttons for our use.
*/
#include "Joystick.h"
#ifndef F_CPU
#error F_CPU is undefined
#endif
#define CTC_MATCH_OVERFLOW ((F_CPU / 1000) / 64) //250 @ 16MHz
volatile unsigned long timer0_milliseconds = 0;
void timer0_init()
{
// Set the Timer Mode to CTC
TCCR0A |= (1 << WGM01);
//set the compare value
OCR0A = CTC_MATCH_OVERFLOW;
//set the interrupt COMPA vect
TIMSK0 |= (1 << OCIE0A);
sei();
//set prescaler 64 & start
TCCR0B |= (1 << CS00) | (1 << CS01);
}
//interrupt and increment milliseconds
ISR(TIMER0_COMPA_vect)
{
timer0_milliseconds++;
}
//rough implementation of arduino millis func
unsigned long millis()
{
unsigned long ms_ret;
ATOMIC_BLOCK(ATOMIC_FORCEON)
{
ms_ret = timer0_milliseconds;
}
return ms_ret;
}
//buffer that holds 16 * 2-byte commands
volatile char rx_buf[32] = {0};
volatile int rx_index = 0;
void serial_init()
{
Serial_Init(9600, false);
Serial_CreateStream(NULL);
UCSR1B |= (1 << RXCIE1);
}
ISR(USART1_RX_vect)
{
char c = getchar();
#ifdef DEBUG
printf("%c", c);
#endif
if (c == 0xFF)
{
serial_flushcommands();
#ifdef DEBUG
printf("All commands flushed.\n");
#endif
}
serial_pushchar(c);
}
int16_t serial_popshort()
{
int16_t ret_data = -1;
if (rx_index == 0 || rx_index == 1)
{
return ret_data;
}
ATOMIC_BLOCK(ATOMIC_FORCEON)
{
ret_data = rx_buf[0] << 8 | rx_buf[1];
char buf[rx_index];
for (int i = 0; i < rx_index; i++)
buf[i] = rx_buf[i + 2];
for (int i = 0; i < rx_index; i++)
rx_buf[i] = 0;
for (int i = 0; i < sizeof(buf); i++)
rx_buf[i] = buf[i];
rx_index -= 2;
}
return ret_data;
}
void serial_pushchar(char data)
{
if (rx_index >= (sizeof(rx_buf)))
{
return;
}
ATOMIC_BLOCK(ATOMIC_FORCEON)
{
rx_buf[rx_index] = data;
rx_index++;
}
}
void serial_flushcommands()
{
ATOMIC_BLOCK(ATOMIC_FORCEON)
{
rx_index = 0;
for (int i = 0; i < sizeof(rx_buf); i++)
rx_buf[i] = 0;
}
}
void HandleUSB()
{
// We need to run our task to process and deliver data for our IN and OUT endpoints.
HID_Task();
// We also need to run the main USB management task.
USB_USBTask();
}
//unsigned long prevMillis = 0;
// Main entry point.
int main(void)
{
// We'll start by performing hardware and peripheral setup.
SetupHardware();
//serial init
serial_init();
//init our timer used for 'millis()' implementation
timer0_init();
// We'll then enable global interrupts for our use.
GlobalInterruptEnable();
// Once that's done, we'll enter an infinite loop.
memset(&ReportData, 0, sizeof(ReportData));
ReportData.LX = STICK_CENTER;
ReportData.LY = STICK_CENTER;
ReportData.RX = STICK_CENTER;
ReportData.RY = STICK_CENTER;
ReportData.HAT = HAT_CENTER;
for (;;)
{
//this loop resides in SwitchInput.c and is called in an infinite loop - write your scripts in SwitchInput.c or call them from that location
MainInputLoop();
}
}
// Configures hardware and peripherals, such as the USB peripherals.
void SetupHardware(void)
{
// We need to disable watchdog if enabled by bootloader/fuses.
MCUSR &= ~(1 << WDRF);
wdt_disable();
// We need to disable clock division before initializing the USB hardware.
clock_prescale_set(clock_div_1);
// We can then initialize our hardware and peripherals, including the USB stack.
// The USB stack should be initialized last.
USB_Init();
}
// Fired to indicate that the device is enumerating.
void EVENT_USB_Device_Connect(void)
{
// We can indicate that we're enumerating here (via status LEDs, sound, etc.).
}
// Fired to indicate that the device is no longer connected to a host.
void EVENT_USB_Device_Disconnect(void)
{
// We can indicate that our device is not ready (via status LEDs, sound, etc.).
}
// Fired when the host set the current configuration of the USB device after enumeration.
void EVENT_USB_Device_ConfigurationChanged(void)
{
bool ConfigSuccess = true;
// We setup the HID report endpoints.
ConfigSuccess &= Endpoint_ConfigureEndpoint(JOYSTICK_OUT_EPADDR, EP_TYPE_INTERRUPT, JOYSTICK_EPSIZE, 1);
ConfigSuccess &= Endpoint_ConfigureEndpoint(JOYSTICK_IN_EPADDR, EP_TYPE_INTERRUPT, JOYSTICK_EPSIZE, 1);
// We can read ConfigSuccess to indicate a success or failure at this point.
}
// Process control requests sent to the device from the USB host.
void EVENT_USB_Device_ControlRequest(void)
{
// We can handle two control requests: a GetReport and a SetReport.
// Not used here, it looks like we don't receive control request from the Switch.
}
// Process and deliver data from IN and OUT endpoints.
void HID_Task(void)
{
// If the device isn't connected and properly configured, we can't do anything here.
if (USB_DeviceState != DEVICE_STATE_Configured)
return;
// We'll start with the OUT endpoint.
Endpoint_SelectEndpoint(JOYSTICK_OUT_EPADDR);
// We'll check to see if we received something on the OUT endpoint.
if (Endpoint_IsOUTReceived())
{
// If we did, and the packet has data, we'll react to it.
if (Endpoint_IsReadWriteAllowed())
{
// We'll create a place to store our data received from the host.
USB_JoystickReport_Output_t JoystickOutputData;
// We'll then take in that data, setting it up in our storage.
Endpoint_Read_Stream_LE(&JoystickOutputData, sizeof(JoystickOutputData), NULL);
// At this point, we can react to this data.
// However, since we're not doing anything with this data, we abandon it.
}
// Regardless of whether we reacted to the data, we acknowledge an OUT packet on this endpoint.
Endpoint_ClearOUT();
}
// We'll then move on to the IN endpoint.
Endpoint_SelectEndpoint(JOYSTICK_IN_EPADDR);
// We first check to see if the host is ready to accept data.
if (Endpoint_IsINReady())
{
// Once populated, we can output this data to the host. We do this by first writing the data to the control stream.
Endpoint_Write_Stream_LE(&ReportData, sizeof(ReportData), NULL);
// We then send an IN packet on this endpoint.
Endpoint_ClearIN();
/* Clear the report data afterwards */
//Edit: we do not want to clear the data so we can send discrete DOWN and UP commands for buttons
//memset(&ReportData, 0, sizeof(ReportData));
}
}