-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_finetune.py
executable file
·486 lines (409 loc) · 22.6 KB
/
main_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os, sys, pdb
import csv
import random
import argparse
import datetime
import numpy as np
import time
import json
from pathlib import Path
import torch
from torchvision import transforms
import timm
from timm.data.mixup import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import ModelEma
from optim_factory import create_optimizer, LayerDecayValueAssigner
from models.resnet import resnet50
from data.datasets import TrainDataset
from engine_finetune import train_one_epoch, evaluate
import utils
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import str2bool, remap_checkpoint_keys
def get_args_parser():
parser = argparse.ArgumentParser('Fine-tuning', add_help=False)
parser.add_argument('--jpeg_factor', type=int, default=None)
parser.add_argument('--blur_sigma', type=float, default=None)
parser.add_argument('--mask_ratio', type=float, default=None)
parser.add_argument('--mask_patch_size', type=int, default=None)
parser.add_argument('--transform_mode', type=str, default='crop')
# Training Config
parser.add_argument('--batch_size', default=64, type=int,
help='Per GPU batch size')
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--update_freq', default=1, type=int,
help='gradient accumulation steps')
# Model parameters
parser.add_argument('--model', default='resnet50', type=str, metavar='MODEL',
help='model architecture')
parser.add_argument('--input_size', default=256, type=int,
help='image input size')
parser.add_argument('--layer_decay_type', type=str, choices=['single', 'group'], default='single',
help="""Layer decay strategies. The single strategy assigns a distinct decaying value for each layer,
whereas the group strategy assigns the same decaying value for three consecutive layers""")
# EMA related parameters
parser.add_argument('--model_ema', action='store_true')
parser.add_argument('--model_ema_decay', type=float, default=0.9999)
parser.add_argument('--model_ema_force_cpu', action='store_true')
parser.add_argument('--model_ema_eval', action='store_true', help='Using ema to eval during training.')
# Optimization parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=1.0)
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-6)')
parser.add_argument('--warmup_epochs', type=int, default=20, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='num of steps to warmup LR, will overload warmup_epochs if set > 0')
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD and using a larger decay by
the end of training improves performance for ViTs.""")
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
# Mixup params
parser.add_argument('--mixup', type=float, default=0.,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=0.,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Finetuning params
parser.add_argument('--pretrained', default=True, help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=True)
parser.add_argument('--head_init_scale', default=0.001, type=float,
help='classifier head initial scale, typically adjusted in fine-tuning')
parser.add_argument('--model_key', default='model|module', type=str,
help='which key to load from saved state dict, usually model or model_ema')
parser.add_argument('--model_prefix', default='', type=str)
# Dataset parameters
parser.add_argument('--num_train', default=10000000000, type=int,
help="Number of training images, incluing real and fake")
parser.add_argument('--data_path', default='', type=str,
help='dataset path')
parser.add_argument('--nb_classes', default=2, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--eval_data_path', default=None, type=str,
help='dataset path for evaluation')
parser.add_argument('--imagenet_default_mean_and_std', type=str2bool, default=True)
parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'],
type=str, help='ImageNet dataset path')
parser.add_argument('--auto_resume', type=str2bool, default=True)
parser.add_argument('--save_ckpt', type=str2bool, default=True)
parser.add_argument('--save_ckpt_freq', default=5, type=int)
parser.add_argument('--save_ckpt_num', default=100, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', type=str2bool, default=False,
help='Perform evaluation only')
parser.add_argument('--dist_eval', type=str2bool, default=True,
help='Enabling distributed evaluation')
parser.add_argument('--disable_eval', action='store_true',
help='Disabling evaluation during training')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin_mem', type=str2bool, default=True,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# Evaluation parameters
parser.add_argument('--crop_pct', type=float, default=None)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--local-rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', type=str2bool, default=False)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--use_amp', action='store_true',
help="Use apex AMP (Automatic Mixed Precision) or not")
return parser
def seed_everything(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main(args):
utils.init_distributed_mode(args)
print(args)
# Fix the Seed for Reproducibility
if args.seed is not None:
seed = args.seed + utils.get_rank()
seed_everything(seed, True)
device = torch.device(args.device)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
# Init Train & Test Datasets
if not args.eval:
dataset_train = TrainDataset(is_train=True, args=args)
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True,
)
print("Sampler_train = %s" % str(sampler_train))
if args.disable_eval:
args.dist_eval = False
dataset_val = None
else:
dataset_val = TrainDataset(is_train=False, args=args)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
if dataset_val is not None:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=1 if args.transform_mode == 'source' else args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
else:
data_loader_val = None
# Init Model
if args.model == 'SAFE':
model = resnet50(num_classes=2)
else:
model = timm.create_model(args.model, pretrained=args.pretrained, num_classes=2)
model.to(device)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print("Model = %s" % str(model_without_ddp))
print(f"Number of params: {n_parameters/1e6:.2f}M")
eff_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
if not args.eval: num_training_steps_per_epoch = len(dataset_train) // eff_batch_size
if args.lr is None:
args.lr = args.blr * eff_batch_size / 256
print("Base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("Actual lr: %.2e" % args.lr)
print("Accumulate grad iterations: %d" % args.update_freq)
print("Effective batch size: %d" % eff_batch_size)
if args.layer_decay < 1.0 or args.layer_decay > 1.0:
assert args.layer_decay_type in ['single', 'group']
if args.layer_decay_type == 'group': # applies for Base and Large models
num_layers = 12
else:
num_layers = sum(model_without_ddp.depths)
print("--------------------------------------")
print(num_layers)
print("--------------------------------------")
assigner = LayerDecayValueAssigner(
list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)),
depths=model_without_ddp.depths, layer_decay_type=args.layer_decay_type)
else:
assigner = None
if assigner is not None:
print("Assigned values = %s" % str(assigner.values))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
optimizer = create_optimizer(
args, model_without_ddp, skip_list=None,
get_num_layer=assigner.get_layer_id if assigner is not None else None,
get_layer_scale=assigner.get_scale if assigner is not None else None)
loss_scaler = NativeScaler()
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)
if args.eval:
model.eval(); print(f"Eval only mode")
ROOT = args.eval_data_path
VAL_DICT = {
"data/datasets/test1_ForenSynths/test": ['progan', 'stylegan', 'stylegan2', 'biggan', 'cyclegan', 'stargan', 'gaugan', 'deepfake'],
"data/datasets/test4_GenImage/test": ['Midjourney', 'stable_diffusion_v_1_4', 'stable_diffusion_v_1_5', 'ADM', 'Glide', 'wukong', 'VQDM', 'BigGAN'],
}
try:
vals = VAL_DICT[args.eval_data_path]
except:
vals = sorted(os.listdir(args.eval_data_path))
rows = [["{} model testing on...".format(args.resume)],
['testset', 'accuracy', 'avg precision']]
for v_id, val in enumerate(vals):
args.eval_data_path = os.path.join(ROOT, val)
dataset_val = TrainDataset(is_train=False, args=args)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=1 if args.transform_mode == 'source' else args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
test_stats, acc, ap = evaluate(data_loader_val, model, device, val)
print(f"Accuracy of the network on {len(dataset_val)} test images: {test_stats['acc1']:.2%}")
print(f"test dataset is {val} acc: {acc:.2%}, ap: {ap:.2%}")
print("***********************************")
rows.append([val, acc * 100, ap * 100])
def calculate_column_means(rows):
if not rows or len(rows[0]) < 2:
raise ValueError("The input rows list is empty or lacks numeric columns.")
num_columns = len(rows[0]) - 1
means = ['mean'] + [sum(row[i] for row in rows) / len(rows) for i in range(1, num_columns + 1)]
return means
rows.append(calculate_column_means(rows[2:]))
test_dataset_name = ROOT.split('/')[-2]
csv_name = os.path.join(args.output_dir, f'{os.path.basename(args.resume)}_{test_dataset_name}.csv')
with open(csv_name, 'w') as f:
csv_writer = csv.writer(f, delimiter=',')
csv_writer.writerows(rows)
return
max_accuracy = 0.0
if args.model_ema and args.model_ema_eval:
max_accuracy_ema = 0.0
print("Start training for %d epochs" % args.epochs)
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn,
log_writer=log_writer, args=args,
)
if args.output_dir and args.save_ckpt:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema)
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch='last', model_ema=model_ema)
if data_loader_val is not None:
test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)[0]
print(f"Accuracy of the model on the {len(dataset_val)} test images: {test_stats['acc1']:.2%}")
if max_accuracy < test_stats["acc1"]:
max_accuracy = test_stats["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best", model_ema=model_ema)
print(f'Max accuracy: {max_accuracy:.2%}')
if log_writer is not None:
log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch)
# log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch)
log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# repeat testing routines for EMA, if ema eval is turned on
if args.model_ema and args.model_ema_eval:
test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=args.use_amp)[0]
print(f"Accuracy of the model EMA on {len(dataset_val)} test images: {test_stats_ema['acc1']:.2%}")
if max_accuracy_ema < test_stats_ema["acc1"]:
max_accuracy_ema = test_stats_ema["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best-ema", model_ema=model_ema)
print(f'Max EMA accuracy: {max_accuracy_ema:.2%}')
if log_writer is not None:
log_writer.update(test_acc1_ema=test_stats_ema['acc1'], head="perf", step=epoch)
log_stats.update({**{f'test_{k}_ema': v for k, v in test_stats_ema.items()}})
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Fine-tuning', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)