-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdeepspeed_stable_diffusion.py
220 lines (181 loc) · 6.82 KB
/
deepspeed_stable_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
Support Python 3.8
@author: Lou Xiao(louxiao@i32n.com)
@maintainer: Lou Xiao(louxiao@i32n.com)
@copyright: Copyright 2018~2023
@created time: 2023-09-18 14:07:23 CST
@updated time: 2023-09-18 14:07:23 CST
"""
import os.path
import random
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as tnf
from torchvision import transforms
import deepspeed
from diffusers import StableDiffusionPipeline, DDPMScheduler
from loguru import logger as logging
SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
def init_dataset(
dataset_dir: str,
tokenizer=None,
resolution: int = 512,
center_crop: bool = False,
random_flip: bool = False,
):
from datasets import load_dataset
# Downloading and loading a dataset from the hub.
dataset = load_dataset(dataset_dir)
column_names = dataset["train"].column_names
image_column, text_column = column_names
print(column_names)
# preprocess
def text_processor(text_list):
texts = []
for text in text_list:
if isinstance(text, str):
texts.append(text)
elif isinstance(text, (list, np.ndarray)):
# take a random caption if there are multiple
texts.append(random.choice(text))
else:
raise ValueError(
f"Caption column `{text}` should contain either strings or lists of strings."
)
r = tokenizer(
texts,
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return r.input_ids
train_transforms = transforms.Compose(
[
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(resolution) if center_crop else transforms.RandomCrop(resolution),
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def custom_transform(samples):
images = [image.convert("RGB") for image in samples[image_column]]
samples["image"] = [train_transforms(image) for image in images]
samples["text"] = text_processor(samples[text_column])
return samples
dataset = dataset['train'].with_transform(custom_transform)
return dataset
def collate_fn(samples):
image = torch.stack([sample["image"] for sample in samples])
image = image.to(memory_format=torch.contiguous_format).float()
input_ids = torch.stack([example["text"] for example in samples])
return {"image": image, "text": input_ids}
class Diffusion(nn.Module):
def __init__(self, model_path: str):
super().__init__()
# init components
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
local_files_only=True,
use_auth_token=False,
torch_dtype=torch.float16,
use_safetensors=True,
)
self.text_encoder = pipe.text_encoder
self.vae = pipe.vae
self.vae.decoder = None
# we're only training this
self.unet = pipe.unet
self.noise_scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
self.tokenizer = pipe.tokenizer
def forward(self, images, texts):
# train step
with torch.no_grad():
# Convert images to latent space
latents = self.vae.encode(images).latent_dist.sample()
latents = latents * self.vae.config.scaling_factor
# process text
text_tokens = self.text_encoder(texts)[0]
noise = torch.randn_like(latents)
# Sample a random timestep for each image
batch_size = latents.shape[0]
timesteps = torch.randint(0, self.noise_scheduler.config.num_train_timesteps, (batch_size,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
# epsilon
target = noise
# Predict the noise residual and compute loss
predications = self.unet(noisy_latents, timesteps, text_tokens).sample
loss = tnf.mse_loss(predications, target, reduction="mean")
return loss
def parse_arguments():
import argparse
parser = argparse.ArgumentParser(description='deepspeed training script.')
parser.add_argument('--local_rank', type=int, default=-1,
help='local rank passed from distributed launcher')
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
return args
def main():
args = parse_arguments()
# init distributed
deepspeed.init_distributed()
# init model
logging.debug("init model")
model_dir = os.path.join(SCRIPT_PATH, 'data', 'stable-diffusion-2-1')
model = Diffusion(model_dir)
# init dataset
logging.debug("init dataset")
dataset_dir = os.path.join(SCRIPT_PATH, 'data', 'pokemon-blip-captions')
dataset = init_dataset(
dataset_dir,
tokenizer=model.tokenizer,
resolution=512,
center_crop=False,
random_flip=False,
)
# init engine
logging.debug("init engine")
engine, optimizer, training_dataloader, lr_scheduler = deepspeed.initialize(
args=args,
model=model,
model_parameters=model.unet.parameters(),
training_data=dataset,
collate_fn=collate_fn,
# config=deepspeed_config,
)
# load checkpoint
engine.load_checkpoint("./data/SavedModels/FineTunedStableDiffusion/")
# train
last_time = time.time()
loss_list = []
echo_interval = 1
engine.train()
for step, samples in enumerate(training_dataloader):
step += 1
images = samples['image'].to(device=engine.device, dtype=torch.float16)
texts = samples['text'].to(device=engine.device, dtype=torch.long)
loss = engine(images, texts)
engine.backward(loss)
engine.step()
loss_list.append(loss.detach().cpu().numpy())
if step % echo_interval == 0:
loss_avg = np.mean(loss_list[-echo_interval:])
used_time = time.time() - last_time
time_p_step = used_time / echo_interval
if args.local_rank == 0:
logging.info(
"[Train Step] Step:{:10d} Loss:{:8.4f} | Time/Batch: {:6.4f}s",
step, loss_avg, time_p_step,
)
last_time = time.time()
# save checkpoint
engine.save_checkpoint("./data/SavedModels/FineTunedStableDiffusion/")
if __name__ == '__main__':
main()